Articles | Volume 31, issue 4
https://doi.org/10.5194/angeo-31-591-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-591-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tropopause fold occurrence rates over the Antarctic station Troll (72° S, 2.5° E)
M. Mihalikova
Polar Atmospheric Research, Swedish Institute of Space Physics, P.O. Box 812, 98128, Kiruna, Sweden
Division of Space Technology, Luleå University of Technology, Kiruna, Sweden
S. Kirkwood
Polar Atmospheric Research, Swedish Institute of Space Physics, P.O. Box 812, 98128, Kiruna, Sweden
Division of Space Technology, Luleå University of Technology, Kiruna, Sweden
Related authors
Maria Mihalikova, Kaoru Sato, Masaki Tsutsumi, and Toru Sato
Ann. Geophys., 34, 543–555, https://doi.org/10.5194/angeo-34-543-2016, https://doi.org/10.5194/angeo-34-543-2016, 2016
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227, https://doi.org/10.5194/amt-16-4215-2023, https://doi.org/10.5194/amt-16-4215-2023, 2023
Short summary
Short summary
We compared 2 years of wind measurements by the Aeolus satellite with winds from two wind-profiler radars in Arctic Sweden and coastal Antarctica. Biases are similar in magnitude to results from other locations. They are smaller than in earlier studies due to more comparison points and improved criteria for data rejection. On the other hand, the standard deviation is somewhat higher because of degradation of the Aeolus lidar.
Evgenia Belova, Sheila Kirkwood, Peter Voelger, Sourav Chatterjee, Karathazhiyath Satheesan, Susanna Hagelin, Magnus Lindskog, and Heiner Körnich
Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, https://doi.org/10.5194/amt-14-5415-2021, 2021
Short summary
Short summary
Wind measurements from two radars (ESRAD in Arctic Sweden and MARA at the Indian Antarctic station Maitri) are compared with lidar winds from the ESA satellite Aeolus, for July–December 2019. The aim is to check if Aeolus data processing is adequate for the sunlit conditions of polar summer. Agreement is generally good with bias in Aeolus winds < 1 m/s in most circumstances. The exception is a large bias (7 m/s) when the satellite has crossed a sunlit Antarctic ice cap before passing MARA.
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825, https://doi.org/10.5194/amt-14-2813-2021, https://doi.org/10.5194/amt-14-2813-2021, 2021
Short summary
Short summary
We validate horizontal wind measurements at altitudes of 0.5–14 km made with atmospheric radars: ESRAD located near Kiruna in the Swedish Arctic and MARA at the Indian research station Maitri in Antarctica, by comparison with radiosondes, the regional model HARMONIE-AROME and the ECMWF ERA5 reanalysis. Good agreement was found in general, and radar bias and uncertainty were estimated. These radars are planned to be used for validation of winds measured by lidar by the ESA satellite Aeolus.
Maria Mihalikova, Kaoru Sato, Masaki Tsutsumi, and Toru Sato
Ann. Geophys., 34, 543–555, https://doi.org/10.5194/angeo-34-543-2016, https://doi.org/10.5194/angeo-34-543-2016, 2016
A. Réchou and S. Kirkwood
Ann. Geophys., 33, 789–804, https://doi.org/10.5194/angeo-33-789-2015, https://doi.org/10.5194/angeo-33-789-2015, 2015
Short summary
Short summary
In December 1991, precipitation on the Glorieuses and Mayotte was more than 3 times the climatological mean and mean sunshine duration was less than 1.5h per day. The most likely explanation was low values of the Madden-Julian Oscillation index, which favours high rainfall. El Niño, eastward quasi-biennial oscillation and high solar activity may also have had an indirect effect. No effect of the Pinatubo volcanic eruption is indicated as the precipitation anomalies are only local.
S. Kirkwood, A. Osepian, E. Belova, and Y.-S. Lee
Ann. Geophys., 33, 609–622, https://doi.org/10.5194/angeo-33-609-2015, https://doi.org/10.5194/angeo-33-609-2015, 2015
Short summary
Short summary
It is well known that occasional eruptions of very high energy protons from the Sun directly impact the middle atmosphere in the polar regions. This paper shows that much more frequent high-speed streams in the plasma wind from the Sun can also modify the same parts of the atmosphere. Their effects are made "visible" by strong enhancement of radar echoes in polar winter and were found to affect half of the days when observations were made at Troll, Antarctica, in 2012 and 2013.
S. Kirkwood, A. Osepian, E. Belova, J. Urban, K. Pérot, and A. K. Sinha
Ann. Geophys., 33, 561–572, https://doi.org/10.5194/angeo-33-561-2015, https://doi.org/10.5194/angeo-33-561-2015, 2015
Short summary
Short summary
High-speed streams of particles from the Sun can cause high-energy electrons to be precipitated into the Earth's middle atmosphere at polar latitudes. The paper develops and tests a model for how these particles can change the amount of a trace gas, nitric oxide, which has the potential to destroy stratospheric ozone. Model calculations agree well with observations by the Odin satellite of increased nitric oxide over Antarctica associated with high-speed solar wind streams.
A. Réchou, S. Kirkwood, J. Arnault, and P. Dalin
Atmos. Chem. Phys., 14, 6785–6799, https://doi.org/10.5194/acp-14-6785-2014, https://doi.org/10.5194/acp-14-6785-2014, 2014
E. Belova, S. Kirkwood, and T. Sergienko
Ann. Geophys., 31, 1177–1190, https://doi.org/10.5194/angeo-31-1177-2013, https://doi.org/10.5194/angeo-31-1177-2013, 2013
S. Kirkwood, E. Belova, P. Dalin, M. Mihalikova, D. Mikhaylova, D. Murtagh, H. Nilsson, K. Satheesan, J. Urban, and I. Wolf
Ann. Geophys., 31, 333–347, https://doi.org/10.5194/angeo-31-333-2013, https://doi.org/10.5194/angeo-31-333-2013, 2013
A. Réchou, J. Arnault, P. Dalin, and S. Kirkwood
Ann. Geophys., 31, 239–250, https://doi.org/10.5194/angeo-31-239-2013, https://doi.org/10.5194/angeo-31-239-2013, 2013