Articles | Volume 31, issue 12
https://doi.org/10.5194/angeo-31-2229-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-2229-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climatology of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) in the Central Pacific and South American sectors
T. M. Duly
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
N. P. Chapagain
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
J. J. Makela
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Related authors
No articles found.
Daniel D. Billett, Kathryn A. McWilliams, Robert B. Kerr, Jonathan J. Makela, Alex T. Chartier, J. Michael Ruohoniemi, Sudha Kapali, Mike A. Migliozzi, and Juanita Riccobono
Ann. Geophys., 40, 571–583, https://doi.org/10.5194/angeo-40-571-2022, https://doi.org/10.5194/angeo-40-571-2022, 2022
Short summary
Short summary
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes, which can affect the atmosphere. In this paper, we use four ground-based radars to obtain a wide coverage of SAPSs that occurred over the USA, along with interferometer cameras in Virginia and Massachusetts to measure winds. The winds are strongly affected but in different ways, implying that the balance forces on the atmosphere is strongly dependent on proximity to the disturbance.
Drabindra Pandit, Basudev Ghimire, Christine Amory-Mazaudier, Rolland Fleury, Narayan Prasad Chapagain, and Binod Adhikari
Ann. Geophys., 39, 743–758, https://doi.org/10.5194/angeo-39-743-2021, https://doi.org/10.5194/angeo-39-743-2021, 2021
Short summary
Short summary
We analyse the climatology of the ionosphere over Nepal based on GPS-derived vertical total electron content (VTEC) during 2008–2018. The study illustrates the diurnal, monthly, annual, seasonal and solar cycle variations in VTEC. The results show equinoctial asymmetry in TEC in maximum phases in 2014, followed by descending, ascending and minimum phases. The winter anomalies are seen during increasing and maximum phases of the solar cycle (2011–2014) from almost all stations considered.
Claudia M. N. Candido, Jiankui Shi, Inez S. Batista, Fabio Becker-Guedes, Emília Correia, Mangalathayil A. Abdu, Jonathan Makela, Nanan Balan, Narayan Chapagain, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 37, 657–672, https://doi.org/10.5194/angeo-37-657-2019, https://doi.org/10.5194/angeo-37-657-2019, 2019
Short summary
Short summary
This study concerns postmidnight ionospheric irregularities observed during low solar activity conditions. We analyze data from digisondes and optical imaging systems located in an equatorial region over Brazil. The results show that they occur under unfavorable and unexpected conditions. This work can be useful for space weather forecasting during low solar activity.
Khalifa Malki, Aziza Bounhir, Zouhair Benkhaldoun, Jonathan J. Makela, Nicole Vilmer, Daniel J. Fisher, Mohamed Kaab, Khaoula Elbouyahyaoui, Brian J. Harding, Amine Laghriyeb, Ahmed Daassou, and Mohamed Lazrek
Ann. Geophys., 36, 987–998, https://doi.org/10.5194/angeo-36-987-2018, https://doi.org/10.5194/angeo-36-987-2018, 2018
Short summary
Short summary
The novelty of this paper lies in the fact that it addresses the thermosphere–ionosphere coupling in a midlatitude site in north Africa. We have used Fabry–Perot measurements of thermospheric winds and wide-angle camera detection of ionospheric structures at an altitude of about 250 km. We have also used GPS data to extract the TEC over the studied area. We have focused our study on the 27 February geomagnetic storm.
Rafael L. A. Mesquita, John W. Meriwether, Jonathan J. Makela, Daniel J. Fisher, Brian J. Harding, Samuel C. Sanders, Fasil Tesema, and Aaron J. Ridley
Ann. Geophys., 36, 541–553, https://doi.org/10.5194/angeo-36-541-2018, https://doi.org/10.5194/angeo-36-541-2018, 2018
Short summary
Short summary
The midnight temperature maximum (MTM) is a phenomenon resulting from the constructive interference of the atmospheric tides. This paper brings the analysis of a long data set (846 nights) from the NATION network along with new analysis techniques (harmonic background removal and 2-D temperature interpolation) to detect the MTM in the mid-latitude range.
Igo Paulino, Joyrles F. Moraes, Gleuson L. Maranhão, Cristiano M. Wrasse, Ricardo Arlen Buriti, Amauri F. Medeiros, Ana Roberta Paulino, Hisao Takahashi, Jonathan J. Makela, John W. Meriwether, and José André V. Campos
Ann. Geophys., 36, 265–273, https://doi.org/10.5194/angeo-36-265-2018, https://doi.org/10.5194/angeo-36-265-2018, 2018
Short summary
Short summary
This article presents characteristics of periodic waves observed in the thermosphere from airglow images collected in the Northeast of Brazil. Using simultaneous measurements of the background wind in the airglow emission altitudes, it was possible to estimate the intrinsic parameters and the role of the wind in the propagation of the waves into the thermosphere. An anisotropy in the propagation direction of the waves was observed and it could be explained by the wind filtering process.
Cosme Alexandre O. B. Figueiredo, Ricardo A. Buriti, Igo Paulino, John W. Meriwether, Jonathan J. Makela, Inez S. Batista, Diego Barros, and Amauri F. Medeiros
Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, https://doi.org/10.5194/angeo-35-953-2017, 2017
Fasil Tesema, Rafael Mesquita, John Meriwether, Baylie Damtie, Melessew Nigussie, Jonathan Makela, Daniel Fisher, Brian Harding, Endawoke Yizengaw, and Samuel Sanders
Ann. Geophys., 35, 333–344, https://doi.org/10.5194/angeo-35-333-2017, https://doi.org/10.5194/angeo-35-333-2017, 2017
Short summary
Short summary
Measurements of equatorial thermospheric winds obtained from an optical instrument called a Fabry–Perot interferometer in Ethiopia show a significance difference as compared with other longitudinal sectors. The zonal wind in this sector is small and shows a gradual decrease through out the night. Application of climatological wind and temperature models shows good agreement with the observations over Ethiopia.
Mohamed Kaab, Zouhair Benkhaldoun, Daniel J. Fisher, Brian Harding, Aziza Bounhir, Jonathan J. Makela, Amine Laghriyeb, Khalifa Malki, Ahmed Daassou, and Mohamed Lazrek
Ann. Geophys., 35, 161–170, https://doi.org/10.5194/angeo-35-161-2017, https://doi.org/10.5194/angeo-35-161-2017, 2017
Short summary
Short summary
we present the first multi-year results of the climatology of horizontal winds obtained during a period of 26 months. We compare the observed climatologies of neutral winds to that provided by the recently updated Horizontal Wind Model (HWM14) in order to validate that model's predictions of the thermospheric wind patterns over the eastern portion of Africa. HWM14 generally compares well with the horizontal winds, but significant magnitude and phase differences remain in certain seasons.
E. S. Miller, H. Kil, J. J. Makela, R. A. Heelis, E. R. Talaat, and A. Gross
Ann. Geophys., 32, 959–965, https://doi.org/10.5194/angeo-32-959-2014, https://doi.org/10.5194/angeo-32-959-2014, 2014