Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-739-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-43-739-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of electric fields during two partial solar eclipses at the geomagnetic equator
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Joel H. Fernández
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Adán Godoy
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Jackson E. Pérez
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Benjamín A. Urra
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Antonela Ore
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Enrique A. Carrasco
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Juan J. Soria
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Enrique D. Rojo
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Carlos E. Saavedra
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Elías M. Ovalle
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Sulamita M. Ramos
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Helen C. Meza
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Giancarlo E. Mayhuire
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Pedro Quispe
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Juliaca, 21101, Perú
Eduardo Vigo
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Juliaca, 21101, Perú
Escuela Profesional de Ingeniería Ambiental, Universidad Peruana Unión, Lima, 150118, Perú
Related authors
Adán Y. Godoy, Manuel A. Bravo, Benjamín A. Urra, Carlos A. Castillo-Rivera, Marayén R. Canales, and Alberto J. Foppiano
EGUsphere, https://doi.org/10.5194/egusphere-2025-5416, https://doi.org/10.5194/egusphere-2025-5416, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Long-term analysis of 16 solar eclipses over south-central Chile using historical ionograms (1958–2024). Layer-dependent ionospheric responses were quantified, and fragile analog records were rescued and digitized, providing unique insights into eclipse-induced ionospheric variability.
Marayén Canales, Trinidad Duran, Manuel Bravo, Andriy Zalizovski, and Alberto Foppiano
Ann. Geophys., 43, 383–390, https://doi.org/10.5194/angeo-43-383-2025, https://doi.org/10.5194/angeo-43-383-2025, 2025
Short summary
Short summary
This study investigates an ionospheric anomaly in Antarctica that affects electron concentration during summer. We analyse data from four stations, revealing different trends depending on the season and time of day. Vernadsky shows strong influence of the anomaly, while Port Stanley is less affected, and other stations do not show a clear pattern. These results highlight how local phenomena can modify global trends, providing new information about the Earth's space environment.
Adán Y. Godoy, Manuel A. Bravo, Benjamín A. Urra, Carlos A. Castillo-Rivera, Marayén R. Canales, and Alberto J. Foppiano
EGUsphere, https://doi.org/10.5194/egusphere-2025-5416, https://doi.org/10.5194/egusphere-2025-5416, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Long-term analysis of 16 solar eclipses over south-central Chile using historical ionograms (1958–2024). Layer-dependent ionospheric responses were quantified, and fragile analog records were rescued and digitized, providing unique insights into eclipse-induced ionospheric variability.
Marayén Canales, Trinidad Duran, Manuel Bravo, Andriy Zalizovski, and Alberto Foppiano
Ann. Geophys., 43, 383–390, https://doi.org/10.5194/angeo-43-383-2025, https://doi.org/10.5194/angeo-43-383-2025, 2025
Short summary
Short summary
This study investigates an ionospheric anomaly in Antarctica that affects electron concentration during summer. We analyse data from four stations, revealing different trends depending on the season and time of day. Vernadsky shows strong influence of the anomaly, while Port Stanley is less affected, and other stations do not show a clear pattern. These results highlight how local phenomena can modify global trends, providing new information about the Earth's space environment.
Cited articles
Anagnostopoulos, G., Karkanis, A., Kampatagis, A., Marhavilas, P.; Menesidou, S.-A., Efthymiadis, D., Keskinis, S., Ouzounov, D., Hatzigeorgiu, N., and Danikas, M.: Ground Electric Field, Atmospheric Weather and Electric Grid Variations in Northeast Greece Influenced by the March 2012 Solar Activity and the Moderate to Intense Geomagnetic Storms. Remote Sens., 16, 998, https://doi.org/10.3390/rs16060998, 2024.
Anderson, R. V. and Dolezalek, H.: Atmospheric electricity measurements at Waldorf, Maryland during the 7 March 1970 solar eclipse, J. Atmos. Terr. Phys., 34, 561–566, https://doi.org/10.1016/0021-9169(72)90141-9, 1972.
Anderson, R. C., Keefer, D. R., and Myers, O. E.: Atmospheric pressure and temperature changes during the 7 March, 1970 solar eclipse, J. Atmos. Sci., 29, 583–587, 1970.
Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., and Kudeki E.: Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett., 29, https://doi.org/10.1029/2001GL014562, 2002.
Anderson, D., Anghel, A., Chau, J., and Veliz, O.: Daytime vertical E×B drift velocities inferred from ground-based magnetometer observations at low latitudes. Space Weather, 2, S11001, https://doi.org/10.1029/2004SW000095, 2004.
Babakhanov, I. Y., Belinskaya, A. Y., Bizin, M. A., Grekhov, O. M., Khomutov, S. Y., Kuznetsov, V. V., and Pavlov, A. F.: The geophysical disturbances during the total solar eclipse of 1 August 2008 in Novosibirsk, Russia, J. Atmos. Solar-Terr. Phys., 92, 1–6, https://doi.org/10.1016/j.jastp.2012.09.016, 2013.
Barad, R. K., Sripathi, S., and England, S. L.: Multi-instrument observations of the ionospheric response to the 26 December 2019 solar eclipse over Indian and Southeast Asian longitudes, Journal of Geophysical Research-Space Physics, 127, e2022JA030330, https://doi.org/10.1029/2022JA030330, 2022.
Bennett, A. J.: Effects of the March 2015 solar eclipse on near-surface atmospheric electricity, Phil. Trans. R. Soc., A374, 20150215, https://doi.org/10.1098/rsta.2015.0215, 2016.
Bravo, M., Martínez-Ledesma, M., Foppiano, A., Urra, B., Ovalle, E., Villalobos, C., Souza, J., Carrasco, E., Muñoz, P., Tamblay, L., Vega-Jorquera, P., Marín, J., Pacheco, R., Rojo, E., Leiva, R., and Stepanova, M.: First report of an eclipse from Chilean ionosonde observations: comparison with total electron content estimations and the modeled maximum electron concentration and its height, J. Geophys. Res.-Space Physics, 125, e2020JA027923. https://doi.org/10.1029/2020JA027923, 2020.
Calamas, D. M., Nutter, C., and Guajardo, D. N.: Effect of 21 August 2017 solar eclipse on surface-level irradiance and ambient temperature, Int. J. Energy Environ. Eng., 10, 147–156, 2019.
Chen, S. S., Resende, L. C. A., Denardini, C. M., Chagas, R. A. J., Da Silva, L. A., Marchezi, J. P., Moro, J., Nogueira, P. A. B., Santos, A. M., Jauer, P. R., Carmo, C. S., Picanço, G. A. S., and Silva, R. P.: The 14 December 2020 Total Solar Eclipse effects on geomagnetic field variations and plasma density over South America. J. Geophys. Res.-Space Phys., 128, e2022JA030775, https://doi.org/10.1029/2022JA030775, 2023.
De, S. S., De, B. K., Bandyopadhyay, B., Sarkar, B. K., Paul, S., Haldar, D. K., Barui, S., Datta, A., Paul, S. S., and Paul, N.: The Effects of Solar Eclipse of August 1, 2008 on Earth's Atmospheric Parameters, Pure Appl. Geophys. 167, 1273–1279, https://doi.org/10.1007/s00024-009-0041-0, 2010.
Denisenko, V. V., Rycroft, M. J., and Harrison, R. G.: Mathematical Simulation of the Ionospheric Electric Field as a Part of the Global Electric Circuit, Surv. Geophys., 40, 1–35, https://doi.org/10.1007/s10712-018-9499-6, 2019.
Dhanorkar, S., Deshpande, C. G., and Kamra, A. K.: Atmospheric electricity measurements at Pune during the solar eclipse of 18 March 1988, Journal of Atmospheric and Terrestrial Physics, 51, 1031–1034, https://doi.org/10.1016/0021-9169(89)90018-4, 1989.
Harrison, R. G. and Nicoll, K. A.: Fair weather criteria for atmospheric electricity measurements, J. Atmos. Sol.-Terr. Phys., 179, 239–250, https://doi.org/10.1016/j.jastp.2018.07.008, 2018.
Huamán, J.: GOES (Geostationary Operational Environmental Satellite Data Processor), Version 3.4.4, Zenodo [code], https://doi.org/10.5281/zenodo.15127610, 2025.
Huba, J. D. and Krall, J.: Modeling the ionospheric response to the 21 August 2017 solar eclipse, Geophys. Res. Lett., 40, 5005–5010, https://doi.org/10.1002/grl.50987, 2013.
Jeni Victor, N., Frank-Kamenetsky, A. V., Manu, S., and Panneerselvam, C.: Variation of atmospheric electric field measured at Vostok, Antarctica, during St. Patrick's Day storms on 24th solar cycle, J. Geophys. Res.-Space Physics, 122, 6332–6348, https://doi.org/10.1002/2017JA024022, 2017.
Jonah, O. F., Goncharenko, L., Erickson, P. J., Zhang, S., Coster, A., Chau, J. L., de Paula, E. R., and Rideout, W.: Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse, J. Geophys. Res.-Space Phys., 125, e2020JA027909, https://doi.org/10.1029/2020JA027909, 2020.
Kleimenova, N., Kozyreva, O., Michnowski, S., and Kubicki, M.: Influence of geomagnetic disturbances on atmospheric electric field (Ez) variations at high and middle latitudes, Journal of Atmospheric and Solar-Terrestrial Physics, 99, 117–122, https://doi.org/10.1016/j.jastp.2012.07.009, 2013.
Kumar, C. P. A., Gopalsingh, R., Selvaraj, C., Nair, K. U., Jayakumar, H. J., Vishnu, R., Muralidas, S., and Balan, N.: Atmospheric electric parameters and micrometeorological processes during the solar eclipse on 15 January 2010, J. Geophys. Res.-Atmos., 118, 5098–5104, https://doi.org/10.1002/jgrd.50437, 2013.
Kuyeng, K., Scipion, D., Condor, P., Manay, E., and Milla, M: Preliminary results of new operation mode JULIA Medium Power at JRO, in 2023 CEDAR workshop (San Diego, CA, USA: IGP), 25–30, http://hdl.handle.net/20.500.12816/5441 (last access: 6 April 2025), 2023.
Lazzús, J., Vega-Jorquera,P., Pacheco, R., Tamblay, L., Martínez-Ledesma, M., Ovalle, E., Carrasco, E., Bravo, M., Villalobos, C., Salfate, I., Palma-Chilla, L., and Foppiano, A.: Changes in meteorological parameters during the total solar eclipse of 2 July 2019 in La Serena, Chile, Annales of Geophysics, 65, 10–26, https://doi.org/10.4401/ag-8623, 2022.
Le, H., Liu, L., Yue, X., Wan, W., and Ning, B.: Latitudinal dependence of the ionospheric response to solar eclipses, J. Geophys. Res., 114, A07308, https://doi.org/10.1029/2009JA014072, 2009.
Li, W., Sun, Z., Chen, T., Yan, Z., Luo, J., Xu, Q., and Ma, Z.: Different Effects of a Super Storm on Atmospheric Electric Fields at Different Latitudes. Atmosphere, 15, 1314, https://doi.org/10.3390/atmos15111314, 2024.
Liu, X., Chen, J., Han, P., Lei, J., Dang, T., Huang, F., Chen, H., Jiao, L., Ma, X., Tu, J., Lei, Y., and Zhao, J.: The response of geomagnetic daily variation and ionospheric currents to the annular solar eclipse on 21 June 2020, J. Geophys. Res.-Space Phys., 127, e2022JA030494, https://doi.org/10.1029/2022JA030494, 2022.
Lucas, G. M., Thayer, J. P., and Deierling, W.: Statistical analysis of spatial and temporal variations in atmospheric electric fields from a regional array of field mills, J. Geophys. Res.-Atmos., 122, 1158–1174, https://doi.org/10.1002/2016JD025944, 2017.
Manohar, G. K., Kandalgaonkar, S. S., and Kulkarni, M. K.: Impact of a total solar eclipse on surface atmospheric electricity, J. Geophys. Res., 100, 20805–20814, https://doi.org/10.1029/95JD01295, 1995.
Martínez Lozano, M.: Medición del Campo Eléctrico Atmosférico en la Ciudad de León: Establecimiento de Límites para prevención ante la ocurrencia de descargas atmosféricas, technical report, https://doi.org/10.13140/2.1.3635.2323, 2014.
Meza, A., Bosch, G., Natali, M. P., and Eylenstein, B.: Ionospheric and geomagnetic response to the total solar eclipse on 21 August 2017, Adv. Space Res., 69, 16–25, https://doi.org/10.1016/j.asr.2021.07.029, 2021.
Namgaladze, A. A.: Earthquakes and global electrical circuit, Russian Journal of Physical Chemistry B, 7, 589–593, https://doi.org/10.1134/S1990793113050229, 2013.
Nicoll, K. A., Harrison, R. G., Barta, V., Bor, J., Brugge, R., Chillingarian, A., Chum, J., Georgoulias, A. K., Guha, A., Kourtidis, K., Kubicki, M., Mareev, E., Matthews, J., Mkrtchyan, H., Odzimek, A., Raulin, J.-P., Robert, D., Silva, H. G., Tacza, J., Yair, Y., and Yaniv, R.: A global atmospheric electricity monitor climate and geophysical research, J. Atmos. Sol. Terr. Phys., 185, 18–29, https://doi.org/10.1016/j.jastp.2019.01.003, 2019.
Ouar, I., Astafyeva, E., and Maletckii, B: Ionospheric, Thermospheric, Electrodynamic and Magnetic response to the annular solar eclipse of 14 October 2023: a multi-instrumental study, ESS Open Archive [data set], https://doi.org/10.22541/essoar.171536147.71747626/v1, 2024
Peñaloza-Murillo, M. A. and Pasachoff, J. M.: Cloudiness and solar radiation during the longest total solar eclipse of the 21st century at Tianhuangping (Zhejiang), China, J. Geophys. Res., 123, 13443–13461, 2018.
Pulinets, S. and Ouzounov, D.: Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model – An Unified Concept for Earthquake Precursors Validation, Journal of Asian Earth Sciences, 41, 371–382, https://doi.org/10.1016/j.jseaes.2010.03.005, 2011.
Rojas, N.: IR4AVHRR6.cpt (GOES-python: Color palette for satellite sea surface temperature visualization), GitHub [code], https://github.com/rnoeliab/GOES-python/blob/main/SST/IR4AVHRR6.cpt (last access: 14 December 2024), 2021.
Rycroft, M. J., Israelsson, S., and Price, C.: The global atmospheric electric circuit, solar activity and climate change, Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1563–1576, https://doi.org/10.1016/S1364-6826(00)00112-7, 2000.
Siingh, D., Gopalakrishnan, V., Singh, R. P., Kamra, A. K., Singh, S., Pant, V., Singh, R., and Singh, A. K.: The atmospheric global electric circuit: An overview, Atmospheric Research, 84, 91–110, 2007.
Smirnov, S.: Reaction of electric and meteorological states of the near-ground atmosphere during a geomagnetic storm on 5 April 2010, Earth, Planets and Space, 66, 154, https://doi.org/10.1186/s40623-014-0154-2, 2014.
Soria, J. J., Poma, O., Sumire, D. A., and Rojas, J. H. F.: Fuzzy Model with Meteorological Variables for the Determination of the THSW Index and the Electric Field in the Area of East Lima, Peru, in: Artificial Intelligence in Intelligent Systems, edited by: Silhavy, R., CSOC 2021. Lecture Notes in Networks and Systems, vol. 229, Springer, Cham, https://doi.org/10.1007/978-3-030-77445-5_49, 2021.
St.-Maurice, J.-P., Ambili, K. M., and Choudhary, R. K.: Local electrodynamics of a solar eclipse at the magnetic equator in the early afternoon hours, Geophys. Res. Lett., 38, L04102, https://doi.org/10.1029/2010GL046085, 2011.
Surkov, V. and Pilipenko, V: Can seismogenic atmospheric current influence the ionosphere?, Annals of Geophysics, 67, PA107, https://doi.org/10.4401/ag-9031, 2024.
Tacza, J. C., Raulin, J.-P., Macotela, E. L., Norabuena, E. O., and Fernandez, G.: Atmospheric electric field variations and lower ionosphere disturbance during the total solar eclipse of 11 July 2010, Adv. Space Res., 58, 2052–2056, https://doi.org/10.1016/j.asr.2016.01.021, 2016.
Tacza, J., Raulin, J.-P., Marun, A., and Fernandez, G.: On the variation of the atmospheric electric field in South America: The AFINSA Network, in: Proceedings of the XVI International Conference on Atmospheric Electricity, Nara city, Japan, 17–22 June 2018, https://www.researchgate.net/publication/341787602_On_the_variation_of_the_atmospheric_electric_field_in_South_America_The_AFINSA_Network (last access: 30 November 2025), 2018.
Tinsley, B. A.: The global atmospheric electric circuit and its effects on cloud microphysics, Reports on Progress in Physics, 71, 6, 66801, https://doi.org/10.1088/0034-4885/71/6/066801, 2008.
Vega-Jorquera, P., Lazzús, J.A., Tamblay, L., Palma-Chilla, L., Salfate, I., and Pacheco, R.: Geomagnetic Field Variations during the Total Solar Eclipse of 2 July 2019 in La Serena, Chile. Geomagn. Aeron., 61, 287–292, https://doi.org/10.1134/S0016793221020171, 2021.
Velazquez, Y. R., Nicora, M. G., Galligani, V. S., Wolfram, E. A., Orte, F., D'Elia, R., Papandreas, S., and Verstraeten, F.: The 2020 Patagonian solar eclipse from the point of view of the atmospheric electric field, Papers in Physics, 14, 140008, https://doi.org/10.4279/pip.140008, 2022.
Velazquez, Y. R., Nicora, M. G., Galligani, V. S., Wolfram, E. A., Salio, P. V., and D'Elia, R. L.: Exploring the global thunderstorm influence on the fair-weather electric field in Buenos Aires, Atmos. Res., 299, 107182, https://doi.org/10.1016/j.atmosres.2023.107182, 2024.
Winkler, P., Kaminski, U., Köhler, U., Reidl, J., Schroers, H., and Anwender, D.: Development of meteorological parameters and total ozone during the total solar eclipse of August 11, 1999, Meteorol. Z., 10, 193–199, 2001.
Yaniv, R., Yair, Y., Price, C., and Reuveni, Y.: No Response of Surface-Level Atmospheric Electrical Parameters in Israel to Severe Space Weather Events, Atmosphere, 14, 1649, https://doi.org/10.3390/atmos14111649, 2023.
Zerefos, C. S., Balis, D. S., Meleti, C., Bais, A. F., Tourpali, K., Vanicek, K., Cappenlanni, F., Kaminski, U., Colombo, T., Stubi, R., Formenti, P., and Andreae, M. O.: Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999, J. Geophys. Res., 105, 26463–26473, 2000.
Short summary
We studied how solar eclipses affect the electric field in the atmosphere and the movement of charged particles above Earth near the magnetic equator. Using ground-based instruments in Peru, we found that eclipses can lead to significant changes, depending on weather conditions. These results help us better understand how solar events influence the near-Earth environment and its connection to the upper atmosphere.
We studied how solar eclipses affect the electric field in the atmosphere and the movement of...