Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-549-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-549-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Nonlinear Generalized Boussinesq Equation ((2+1)-D) for Rossby-Khantadze Waves
Laila Zafar Kahlon
CORRESPONDING AUTHOR
Physics Department, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
Tamaz David Kaladze
I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University str, Tbilisi 0186, Georgia
E. Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0128, Georgia
Hassan Amir Shah
Physics Department, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
Taimoor Zaka
Physics Department, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
Syed Assad Ul Azeem Bukhari
Physics Department, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
Related authors
Laila Zafar Kahlon, Hassan Amir Shah, Tamaz David Kaladze, Qura Tul Ain, and Syed Assad Bukhari
Nonlin. Processes Geophys., 31, 1–6, https://doi.org/10.5194/npg-31-1-2024, https://doi.org/10.5194/npg-31-1-2024, 2024
Short summary
Short summary
It is shown that sheared Rossby–Khantadze waves can propagate due to inhomogeneities, taking into account the Earth's angular velocity and the magnetic field. Along with the Hall conductivity, these waves can couple in the ionospheric E region.The novelty of the present work is the consideration of magnetic field inhomogeneity, which was not considered before and reduced our considered system of equations to a 1D modified KdV equation.
Laila Zafar Kahlon, Hassan Amir Shah, Tamaz David Kaladze, Qura Tul Ain, and Syed Assad Bukhari
Nonlin. Processes Geophys., 31, 1–6, https://doi.org/10.5194/npg-31-1-2024, https://doi.org/10.5194/npg-31-1-2024, 2024
Short summary
Short summary
It is shown that sheared Rossby–Khantadze waves can propagate due to inhomogeneities, taking into account the Earth's angular velocity and the magnetic field. Along with the Hall conductivity, these waves can couple in the ionospheric E region.The novelty of the present work is the consideration of magnetic field inhomogeneity, which was not considered before and reduced our considered system of equations to a 1D modified KdV equation.
Cited articles
Alperovich, L. S. and Fedorov, E. N.: Hydromagnetic Waves in the Magnetosphere and the Ionosphere, Springer, https://link.springer.com/book/10.1007/978-1-4020-6637-5 (last access: 17 September 2025), 2007.
Bostrom, R.: Observations of weak double layers on auroral field lines, IEEE T. Plasma Sci., 20, 756–763, https://doi.org/10.1109/27.199524, 1992.
Burmaka, V. P., Lysenko, V. N., Chernogor, L. F., and Chernyak, Y. V.: Wave-like processes in the ionospheric F region that accompanied rocket launches from the Baikonur site, Geomagn. Aeronomy, 46, 742–759, https://link.springer.com/article/10.1134/S0016793206060107a, 2006.
Dovner, P. O., Eriksson, A. I., Bostrom, R., and Holback, B.: Freja multiprobe observations of electrostatic solitary structures, Geophys. Res. Lett., 21, 1827–1830, https://doi.org/10.1029/94GL00886, 1994.
El-Danaf, T. S. A.: Septic B-spline method of the Korteweg-de Vries–Burger's equation, Communications in Nonlinear Science and Numerical Simulation, 13, 554–566, https://doi.org/10.1016/j.cnsns.2006.05.010, 2008.
Forbes, J. M.: Planetary waves in the thermosphere-ionosphere system, J. Geomagn. Geoelectr., 48, 91–98, https://www.jstage.jst.go.jp/article/jgg1949/48/1/48_1_91 (last access: 17 September 2025), 1996.
Futatani, S., Horton, W., and Kaladze, T. D.: Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer, Phys. Plasmas, 20, 102903, https://doi.org/10.1063/1.4826592, 2013.
Futatani, S., Horton, W., Kahlon, L. Z., and Kaladze, T. D.: Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere, Phys. Plasmas, 22, 012906, https://doi.org/10.1063/1.4906362, 2015.
Ganji, Z. Z., Ganji, D. D., and Rostamiyan, Y.: Solitary wave solutions for a time-fraction generalized Hirota–Satsuma coupled KdV equation by an analytical technique, Appl. Mathemat. Modell., 33, 3107–3113, https://doi.org/10.1016/j.apm.2008.10.034, 2009.
Gottwald, G. A.: The Zakharov-Kuznetsov equation as a two-dimensional model for nonlinear Rossby waves, arXiv preprint nlin/0312009, https://doi.org/10.48550/arXiv.nlin/0312009, 2003.
Groves, M. D. and Sun, S. M.: Fully localised solitary-wave solutions of the three-dimensional gravity–capillary water-wave problem, Archive for rational mechanics and analysis, 188, 1–91, https://doi.org/10.1007/s00205-007-0085-1, 2008.
Infeld, E. and Rowlands, G.: Nonlinear waves, solitons and chaos, Cambridge University Press, https://doi.org/10.1017/CBO9781139171281, 2000.
Jian, S., Lian-Gui, Y., Chao-Jiu, D. A., and Hui-Qin, Z.: mKdV equation for the amplitude of solitary Rossby waves in stratified shear flows with a zonal shear flow, Atmos. Ocean. Sci. Lett., 2, 18–23, https://doi.org/10.1080/16742834.2009.11446771, 2009.
Johnson, R. S.: A two-dimensional Boussinesq equation for water waves and some of its solutions, J. Fluid Mech., 323, 65–78, 1996.
Kadomtsev, B. B. and Petviashvili, V. I.: On the stability of solitary waves in weakly dispersing media, in: Doklady Akademii Nauk, Russian Academy of Sciences, 192, 753–756, 1970.
Kahlon, L. Z. and Kaladze, T. D.: Generation of zonal flow and magnetic field in the ionospheric E-layer, J. Plasma Phys., 81, 905810512, https://doi.org/10.1017/S002237781500080X, 2015.
Kahlon, L. Z., Shah H. A., Kaladze, T. D., Ain, Q. T., and Bukhari, S. A.: Brief Communication: A modified Korteweg–de Vries equation for Rossby–Khantadze waves in a sheared zonal flow of the ionospheric E layer, Nonlin. Process. Geophys., 31, 1–6, https://doi.org/10.5194/npg-31-1-2024, 2024.
Kaladze, T. D.: Planetary electromagnetic waves in the ionospheric E-layer, in: Proc. First Cairo Conf. Plasma Physics and Applications (CCPPA '03), Cairo, Egypt, 11–15 October 2003, edited by: Kunze, H.-J., El-Khalafawy, T., and Hegazy, H., German-Egyptian Cooperation, Shriften des Forschungszentrums Jülich, Bilateral seminars of the International Bureau, 34, 68, https://juser.fz-juelich.de/record/892417 (last access: 17 September 2025), 2004.
Kaladze, T. D., Aburjania, G. D., Kharshiladze, O. A, Horton, W., and Kim, Y.-H: Theory of magnetized Rossby waves in the ionospheric E layer, J. Geophys. Res., 109, A05302, https://doi.org/10.1029/2003JA010049, 2004.
Kaladze, T. D., Tsamalashvili, L. V., Wu, D. J., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L., and Shukla, P. K.: Rossby-wave driven zonal flows in the ionospheric E-layer, J. Plasma Phys., 73, 131–140, https://doi.org/10.1017/S0022377806004351, 2007.
Kaladze, T. D., Pokhotelov, O. A., Stenflo, L., Rogava, J., Tsamalashvili, L. V., and Tsik-Lauri, M.: Zonal flow interaction with Rossby waves in the Earth's atmosphere: a numerical simulation, Phys. Lett. A, 372, 5177–5180, https://doi.org/10.1016/j.physleta.2008.06.008, 2008.
Kaladze, T. D., Tsamalashvili, L. V., and Kahlon, L. Z.: Rossby-Khantadze electromagnetic planetary vortical motions in the ionospheric E-layer, J. Plasma Phys., 77, 813–828, https://doi.org/10.1017/S0022377811000237, 2011.
Kaladze, T., Kahlon, L., Horton, W., Pokhotelov, O., and Onishchenko, O.: Shear flow driven Rossby-Khantadze electromagnetic planetary vortices in the ionospheric E-layer, Europhys. Lett., 106, 29001, https://doi.org/10.1209/0295-5075/106/29001, 2014.
Kaladze, T. D., Kahlon, L. Z., and Tsamalashvili, L. V.: Excitation of zonal flow and magnetic field by Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer, Phys. Plasmas, 19, 022902, https://doi.org/10.1063/1.3681370, 2012.
Kaladze, T., Tsamalashvili, L., Kaladze, D., Ozcan, O., Yesil, A., and Inc, M.: Modified KdV equation for magnetized Rossby waves in a zonal flow of the ionospheric E-layer, Phys. Lett. A, 383, 125888, https://doi.org/10.1016/j.physleta.2019.125888, 2019.
Kaladze, T. D., Horton, W., Kahlon, L. Z., Pokhotelov, O., and Onishchenko, O.: Zonal flows and magnetic fields driven by large-amplitude Rossby-Alfvén-Khantadze waves in the E layer ionosphere, J. Geophys. Res.-Space, 118, 7822–7833, https://doi.org/10.1002/2013JA019415, 2013a.
Kaladze, T. D., Horton, W., Kahlon, L. Z., Pokhotelov, O., and Onishchenko, O.: Generation of zonal flow and magnetic field by coupled Rossby-Alfvén-Khantadze waves in the Earth's ionospheric E-layer, Phys. Scripta, 88, 065501, https://doi.org/10.1088/0031-8949/88/06/065501, 2013b.
Khantadze, A. G.: Hydromagnetic gradient waves in dynamo region of the ionosphere, Bull. Acad. Sci. Georgian SSR 123, 69, ISSN 0132-1447, 1986 (in Russian).
Khantadze, A. G.: On the electromagnetic planetary waves in the Earth's ionosphere, J. Georgian Geophys. Soc. B, Phys. Atmos. Ocean and Cosmic Rays 4, 125, ISSN 1512-1127, 1999 (in Russian).
Khantadze, A. G.: A new type of natural oscillations in conducting atmosphere, Dokl. Earth Sci., 376, 93, ISSN: 1531-8354, ISSN: 1028-334X, 2001.
Khantadze, A. G., Jandieri, G. V., Ishimaru, A., Kaladze, T. D., and Diasamidze, Zh. M.: Electromagnetic oscillations of the Earth's upper atmosphere (review), Ann. Geophys., 28, 1387–1399, https://doi.org/10.5194/angeo-28-1387-2010, 2010.
Lin, C. and Zhang, X. L.: The formally variable separation approach for the modified Zakharov–Kuznetsov equation, Communications in Nonlinear Science and Numerical Simulation, 12, 636–642, https://doi.org/10.1016/j.cnsns.2005.06.004, 2007.
Lindqvist, P. A., Marklud, G. T., and Blomberg, L. G.: Plasma characteristics determined by the Freja electric field instrument, Space Sci. Rev., 70, 593–602, https://doi.org/10.1007/BF00756888, 1994.
Liu, Q.-S., Zhang, Z.-Y., Zhang,R.-G., and Huang, C.-X.: Dynamical Analysis and Exact Solutions of a New (2+1)-Dimensional Generalized Boussinesq Model Equation for Nonlinear Rossby Waves, Communication Theoretical Physics, 71, 1054–1062, https://ctp.itp.ac.cn/EN/abstract/abstract17542.shtml (last access: 17 September 2025), 2019.
Lü, X. and Ma, W. X. : Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dynamics, 85, 1217–1222, https://doi.org/10.1007/s11071-016-2755-8, 2016.
Lü, X., Chen, S. T., and Ma, W. X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation, Nonlinear Dynamics, 86, 523–534, https://doi.org/10.1007/s11071-016-2905-z, 2016.
Ma, W. X. and Chen, M.: Direct search for exact solutions to the nonlinear Schrödinger equation, Applied Mathematics and Computation, 215, 2835–2842, https://doi.org/10.1016/j.amc.2009.09.024, 2009.
Ma, W. X. and Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, International Journal of Non-Linear Mechanics, 31, 329–338, https://doi.org/10.1016/0020-7462(95)00064-X, 1996.
Ma, W. X. and Lee, J. H.: A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation. Chaos, Solitons and Fractals, 42, 1356–1363, https://doi.org/10.1016/j.chaos.2009.03.043, 2009.
Ma, W. X. and You, Y.: Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Transactions of the American mathematical society, 357, 1753–1778, https://doi.org/10.1090/S0002-9947-04-03726-2, 2005.
Ma, W. X. and Zhu, Z.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Applied Mathematics and Computation, 218, 11871–11879, https://doi.org/10.1016/j.amc.2012.05.049, 2012.
Manafian, J. and Aghdaei, M. F.: Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, The European Physical Journal Plus, 131, 97, https://doi.org/10.1140/epjp/i2016-16097-3, 2016.
Miao, X. J. and Zhang, Z. Y.: The modified G′G-expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity, Communications in Nonlinear Science and Numerical Simulation, 16, 4259–4267, https://doi.org/10.1016/j.cnsns.2011.03.032, 2011.
Mitsotakis, D. E.: Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Mathematics and Computers in Simulation, 80, 860–873, https://doi.org/10.1016/j.matcom.2009.08.029, 2009.
Onishchenko, O. G., Pokhotelov, O. A., Sagdeev, R. Z., Shukla, P. K., and Stenflo, L.: Generation of zonal flows by Rossby waves in the atmosphere, Nonlin. Process. Geophys., 11, 241–244, https://doi.org/10.5194/npg-11-241-2004, 2004.
Pedlosky, J.: Geophysical fluid dynamics, Vol. 710, New York, Springer, https://doi.org/10.1007/978-1-4612-4650-3, 1987.
Qiang, Z., Zuntao, F., and Shikuo, L.: Equatorial envelope Rossby solitons in a shear flow, Adv. Atmos. Sci., 18, 418–428, https://doi.org/10.1007/BF02919321, 2001.
Satoh, M.: Atmospheric Circulation Dynamics and General Circulation Models, Springer, New York, https://doi.org/10.1007/978-3-642-13574-3, 2004.
Sharadze, Z. S.: Phenomena in the middle-latitude ionosphere, PhD Thesis, Moscow, 1991.
Sharadze, Z. S., Japaridze, G. A., Kikvilashvili, G. B., and Liadze, Z. L.: Wave disturbances of non-acoustical nature in the middle-latitude ionosphere, Geomagn. Aeronomy, 28, 446–451, 1988 (in Russian).
Shukla, P. K. and Stenflo, L.: Generation of zonal flows by Rossby waves, Phys. Lett. A, 307, 154–157, https://doi.org/10.1016/S0375-9601(02)01675-4, 2003.
Song, J. and Yang, L. G.: Classical Areas of Phenomenology: Modified KdV equation for solitary Rossby waves with β effect in barotropic fluids, Chinese Physics B, 18, 2873–2877, https://doi.org/10.1088/1674-1056/18/7/042, 2009.
Tasbozan, O., Çenesiz, Y., and Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method, The European Physical Journal Plus, 131, 1–14, https://doi.org/10.1140/epjp/i2016-16244-x, 2016.
Uddin, M.: On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method, Applied Mathematical Modelling, 38, 135–144, https://doi.org/10.1016/j.apm.2013.05.060, 2014.
Vukcevic, M. and Popovic, L. Č.: Solitons in the ionosphere- Advantages and perspectives, Proceedings of the XII Serbian-Bulgarian Astronomical Conference, (XII SBAC) Sokobanja, Serbia, 25–29 September 2020, edited by: Popović, L. Č., Srećković, V. A., Dimitrijević, M. S., and Kovačević, A., Publ. Astron. Soc. “Rudjer Bošković”, 20, 85–91, https://doi.org/10.3390/app11167194, 2020.
Wang, H. and Yan, G.: Lattice Boltzmann model for the interaction of (2+1)-dimensional solitons in generalized Gross–Pitaevskii equation, Applied Mathematical Modelling, 40, 5139–5152, https://doi.org/10.1016/j.apm.2015.12.035, 2016.
Wazwaz, A. M.: Exact solutions with solitons and periodic structures for the Zakharov–Kuznetsov (ZK) equation and its modified form, Communications in Nonlinear Science and Numerical Simulation, 10, 597–606, https://doi.org/10.1016/j.cnsns.2004.03.001, 2005.
Yang, H. W., Xu, Z. H., Yang, D. Z., Feng, X. R., Yin, B. S., and Dong, H. H.: ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect, Advances in Difference Equations, 1–22, https://doi.org/10.1186/s13662-016-0901-8, 2016.
Yang, H. W., Chen, X., Guo, M., and Chen, Y. D.: A new ZK–BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property, Nonlinear Dynamics, 91, 2019–2032, https://doi.org/10.1007/s11071-017-4000-5, 2018.
Zakharov, V. E. and Kuznetsov, E. A.: On three dimensional solitons, Zhurnal Eksp. Teoret. Fiz, 66, 594–597, 1974.
Zhang, R., Yang, L., Song, J., and Liu, Q.: (2+1)-Dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography, Nonlinear Dynamics, 90, 815–822, https://doi.org/10.1007/s11071-017-3694-8, 2017a.
Zhang, R., Yang, L., Song, J., and Yang, H.: (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method, Computers and Mathematics with Applications, 73, 1996–2003, https://doi.org/10.1016/j.camwa.2017.02.036, 2017b.
Zhang, Z. Y., Liu, Z. H., Miao, X. J., and Chen, Y. Z.: New exact solutions to the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity, Applied Mathematics and Computation, 216, 3064–3072, https://doi.org/10.1016/j.amc.2010.04.026, 2010.
Zhang, Z. Y., Li, Y. X., Liu, Z. H., and Miao, X. J.: New exact solutions to the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity via modified trigonometric function series method, Communications in Nonlinear Science and Numerical Simulation, 16, 3097–3106, https://doi.org/10.1016/j.cnsns.2010.12.010, 2011.
Zhang, Z. Y., Gan, X. Y., Yu, D. M., Zhang, Y. H., and Li, X. P.: A note on exact traveling wave solutions of the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity, Communications in Theoretical Physics, 57, 764, https://doi.org/10.1088/0253-6102/57/5/05, 2012.
Zhang, Z., Huang, J., Zhong, J., Dou, S. S., Liu, J., Peng, D., and Gao, T.: The extended ( )-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity, Pramana, 82, 1011–1029, https://doi.org/10.1007/s12043-014-0747-0, 2014.
Short summary
In this work, the investigation of Rossby-Khantadze waves with sheared zonal flows in E-ionosphere is presented. The spatially inhomogeneous Earth's angular velocity and background magnetic field are considered. The field inhomogeneity makes the coupling of Rossby and Khantadze waves. The numerical work of obtained linear frequencies is done. By using the method of multiple scale, we obtained a new Boussinesq nonlinear equation. Also, we obtain the travelling solitary structures.
In this work, the investigation of Rossby-Khantadze waves with sheared zonal flows in...