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Abstract. In the following paper, we investigate nonlinear
Rossby-Khantadze waves, by taking into account inhomo-
geneity in the geomagnetic field and angular velocity — due
to Earth’s differential rotation. Considering the system to be
weakly nonlinear, we make use of perturbation theory to de-
rive a new (241)-D generalized form of Boussineq equation.
We evaluate the obtained equation by using the qualitative
theory of ordinary differential equations (ODEs), and bifur-
cation theory of dynamical systems. The obtained numerical
results show that the aforementioned solutions of the travel-
ing waves correspond to Rossby-Khantadze solitons.

1 Introduction

Numerous investigations conducted by ground-based and
satellite observations gives proof of the presence of zonal
flows in various regions of the terrestrial atmosphere (Ped-
losky, 1987). This is based on the fact of the non-uniform
heating caused by the sun in the Earth’s atmospheric regions.
These ultra-low frequency (ULF) perturbations in ionosphere
E and F regions occur due to the sheared flow with nonho-
mogeneous velocities along the meridians (Shukla and Sten-
flo, 2003; Onishchenko et al., 2004; Satoh, 2004; Kaladze et
al., 2007; Kaladze et al., 2008). The effects of sheared flow
on the properties of linear and non-linear waves in the iono-
sphere and under suitable conditions they give rise various
nonlinear structures like zonal flows (ZFs), vortices, and soli-
tons etc.

Sheared Rossby waves have gained much attention due
to their prominent role in the global atmospheric circula-
tion. Such slow long-period planetary waves have phase ve-
locities ~ 1-100ms~!, which is around the velocity of the
ionospheric (local) winds. Their frequency is in the order of
1074-107%s~! at middle latitudes, whereas the period is at
2hto 14 d. Besides the slow Rossby waves, fast perturbations
also exist in the moderate-latitude ionosphere, which are cre-
ated by the latitudinal inhomogeneity of the Earth’magnetic
field and the Hall effect. The first theoretical evidence of such
large-scale EM perturbations in the ionospheric E- and F-
regions was made by Khantadze (1986, 1999, 2001), and in
this work, he differentiated between fast and slow large-scale
EM planetary waves. Consequently, fast EM planetary waves
were named Khantadze modes, and these waves were ob-
served by Soyuz and Proton rockets (Burmaka et al., 2006) at
the middle latitude and by the world network of ionospheric
and magnetic observations (Sharadze et al., 1988; Sharadze,
1991; Alperovich and Fedorov, 2007). Detailed analysis of
such planetary EM waves was carried out by Kaladze (2003),
Kaladze et al. (2004) and Khantadze et al. (2010).

The spatial inhomogeneity along the meridians, of both
the ambient magnetic field and the Coriolis force parame-
ter generates coupled modes called the Rossby-Khantadze
(RK) waves (see e.g., Kaladze et al., 2011). The existence
of sheared RK electromagnetic vortices in the E region
of Earth’s ionosphere is studied thoroughly by Kaladze et
al. (2011, 2012, 2013a, b, 2014). In those works, the au-
thors have not only shown the self-organization of cou-
pled RK waves into dipolar solitary vortices, but also pre-
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dicted the generation of magnetic field in the system due
to the aforementioned waves. More recently, different non-
linear processes having relevance to the generation of zonal
flows (sheared) by Rossby waves are considered. The key
factor for the generation of zonal flows in short-wavelength
Rossby waves is Reynold’s stress (Shukla et al., 2003; On-
ishchenko et al., 2004). Rossby waves causes the generation
of zonal flows in E layer of ionosphere (Kaladze et al., 2007).
Such nonlinear Rossby wave structures splits into various
parts, and this splitting is dependent on zonal flow’s energy
(Kaladze et al., 2008). Along with the analytical side, nu-
merical work on RK waves with sheared zonal flows in the
E layer of the ionosphere is worked out as well (Futatani et
al., 2013, 2015). In these works, breaking of vortices is stud-
ied, where the energy is transferred from sheared flow into
these multiple pieces (daughter waves). It is worth noting that
equatorially propagating Rossby solitary waves by sheared
flows have been predicted and discussed (Qiang et al., 2001)
and their presence was confirmed through observations by
Freja and Viking satellites (Bostrom, 1992; Lindqvist et al.,
1994; Dovner et al., 1994; Qiang et al., 2001). In Jian et
al. (2009)’s work, the authors studied the nonlinear propa-
gation of sheared Rossby waves in stratified neutral fluids
and obtained modified Korteweg-de Vries (MKdV) equation,
which is characterised by a cubic nonlinearity. Kahlon et
al. (2024), investigated the MKdV equation with cubic non-
linearity for Rossby-Khantadze nonlinear waves.

Zonal flow’s generation in the ionosphere’s E region
by Rossby-Khantadze waves having magnetic field is also
shown (Kaladze et al., 2012; Kahlon and Kaladze, 2015),
where it has been predicted that there exists a possibility
of the magnetic field generation, at the strength of 10° nT.
Kaladze et al. (2019) studied the nonlinear interaction of
magnetized Rossby waves with inclusion of zonal flows in
the Earth’s ionospheric E-layer, in which MKdV solitons
were obtained. The possibility of planetary Rossby wave’s
existence in the dynamo E-area of weakly ionised ionosphere
was predicted by Forbes (1996). It was also shown that the
theoretical work corresponds with the experimental interpre-
tations. Much later, Vukcevic and Popovic (2020) investi-
gated the possibility of soliton formation at different latitudes
in ionosphere. Direct observed data of satellites of such soli-
ton structures from Earth’s surface are discussed.

In the context of shallow water waves and in plasmas, sev-
eral researchers have extended the KdV and MKdV equa-
tions to higher dimensions, in order to obtain realistically
accurate results. Kadomstev-Petviashvilli (KP) equation and
Zakharov-Kuznetsov (ZK) equation have gained much atten-
tion over the years (Vukcevic and Popovic, 2020; Kadomt-
sev and Petviashvili, 1970; Groves and Sun, 2008; Infeld
and Rowland, 2000; Zakharov and Kuznetsov, 1974). Both
of these equations are (2+ 1) — dimensional in nature and
are very useful in plasma models (as one can get almost
complete information by taking parallel and perpendicular
dimension into account). While modelling shallow water
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waves, Johnson (1996) investigated a (2 4 1) — dimensional
Boussinesq equation for gravitational surface waves. Mak-
ing use of the surface wave theory, Mitsotakis (2009) in-
vestigated the Boussinesq equation and simulated the prop-
agation of such waves. In the context of geophysics, many
authors (Gottwald, 2003; Yang et al., 2016, 2018; Zhang et
al., 2017a, b) have investigated ZK equation by considering
nonlinear Rossby waves from the quasi-geostropic potential
vorticity equation. Although, the Boussinesq equation in the
study of the nonlinear Rossby-Khantadze waves is not re-
ported so far.

It is very useful to find exact solutions of nonlinear par-
tial differential equations. Several techniques have recently
been used to find such solutions, including but not limited
to the method of trigonometric series (Ma and Fuchssteiner,
1996), the method of tan(¢ (§)/2)-expansion (Manafian and
Aghdaei, 2016), sine-cosine method (Wazwaz, 2005), Wron-
skian method (Ma and You, 2005), separation of variables
approach (Lin and Zhang, 2007), Septic B-spline method (El-
Danaf, 2008), the transformative functional rational method
(Ma and Lee, 2009), the symmetry algebric method (Ma and
Chen, 2009), the homotopy perturbation method (Ganji et al.,
2009), the modified method of mapping and the extended
mapping method (Zhang et al., 2010), qualitative theory of
the bifurcation method and dynamical systems (Zhang et
al., 2011), the multiple exp-function method (Ma and Zhu,
2012), the modified (G’/G)- method of expansion (Miao
and Zhang, 2011), the modified trigonometric function se-
ries method (Zhang et al., 2011) infinite series method and
Jacobi elliptic functional method (Zhang et al., 2012; Tas-
bozan et al., 2016), RBF approximation method (Uddin,
2014) (G'/ G —1/ G)-expansion method (Zhang et al., 2014),
Hirota bilinear method (Lii et al., 2016; Ma and Fuchssteiner,
1996; Lii and Ma, 2016), lattice Boltzmann method (Wang
and Yan, 2016) to name a few.

In the present work, for the partially ionized and con-
ducting ionospheric E plasma we consider the stream-
function and evolution of geomagnetic field for electromag-
netic Rossby-Khantadze (RK) waves, which provides nov-
elty to this work. In Sect. 2, we set the system of initial equa-
tions. In Sect. 3, by using the reductive perturbation tech-
nique we obtain the linear dispersion equation from the low-
est order of ¢. In Sect. 4, we derive the Boussinesq equation
for Rossby-Khantadze nonlinear waves from our considered
set of equations. In Sect. 5, we study the dynamical analysis
of the Boussinesq equation and get its exact traveling solitary
solutions. In second last section, discussions are presented in
Sect. 6. The summary and conclusion are made in Sect. 7.

2 Mathematical Preliminaries
We start by considering a weakly ionised system, as is

characteristic to ionospheric plasmas. Here ions, electrons
and neutral particles are embedded in a nonhomogeneous
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geomagnetic field, By(y) = (0, Boy (¥), Boz(y)), and the
angular velocity is taken into consideration as, Q2(y) =
(0, Qoy(»), R0:(y)). We consider the 2D incompressible
motion i.e., v = (uv, 0), which represents the velocity of the
neutral gas where u = —ay U= —f and ¥ (x, y, t) is the
stream function.

We make use of a slab geometry with zonally x, latitu-
dinally y, and locally vertical direction along z axis. Fur-
thermore, the behavior of the nonlinear Rossby-Khantadze
sheared electromagnetic waves is expressed by the 2D sys-
tem of equations (e.g., Kaladze et al., 2011, 2014; Song and
Yang, 2009; Liu et al., 2019) as given below:

L 4B+ T A — gt =—pAy + 0

la
+J(w h)+,633‘”+c33h_0 (12)

Here in the Eq. (la) we consider vorticity as, ¢; =e;
V xv=Ay =V = (37 +0;) ¥, from momentum equa-

tion of single fluid where g = a}; = 283?,01 is the latitudi-
nally inhomogenous angular velocity with f = fo+ 8 (y) y.
Here, fo=2Q0, =2Q¢sin¢y. While the parameter cp =
9By,

Bp/enug with Bp = Ty being the nonhomogeneity in
the geo-magnetic field,n is charged particles’s number den-
sity, J (a,b) = 3¢ % - g_;l 22 is the Jacobian. Equation (1b)
shows the z-component of perturbed magnetic field. Note
that lesser contribution of charged particles (in comparison
of neutrals) plays their role (Kaladze et al., 2013a, b) in the
inductive current.

To solve the set of Eq. (1), we use the boundary condition

oy oy
0x 0x

=0, @)
y=xn

Y=

representing the flow along the meridional directions, as ex-
plained by Pedlosky (1987) and Satoh (2004).

By introducing the following dimensionless parameters,
we can express Eq. (1) in dimensionless form

(x,y)—Lo(x*y*), 1//=L()U()w*, t =7t*,
Uo . Up . Ug .
Y s = — . = — 3
p=af' m=gonts 0=730 )

Here asterisk denotes the dimensional variables, which are
further dropped in the equation below. Here L is the zonally
length; H is a vertically length and Uy is the velocity. Finally,
Eq. (1) takes the form

{ DL+ BSL 40 (v AY) - ﬁﬂg R=-usvio.
T b+ B 4 epdh =0,

with the following boundary conditions

a 9

Wl _W 5)
ax o Ox|;
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3 Perturbation and weakly nonlinear approach

In this section, to investigate the non-linear Boussinesq equa-
tion describing the solitary Rossby-Khantadze waves. Here
we make use of multiple scale and asymptotic expansion ap-
proach.

The expression

V=9 O +y (1) (©6)

describes the stream function with ¥ = — [¢'[u (s) — co]ds
representing the background stream function where ¢ is a
constant, u(y) refers to background flow, and v’ is the dis-
turbance in stream function. While the perturbed magnetic
field is:

h=eh' )

Thus, the set of Eq. (4) can be expressed as
Bt @—co)Z)AY +pM S+ (v, AY)

_ BB 3 _ 2
Hop 0x —nATY! (8)

f’—h’+sJ(¢,h)+(U(y)—CO) + Bl

+cp %’; =0.

where p (y) = (B(»)y —u")
By applying the multiple scale approach we find the fol-
lowing stretched coordinates,

X:s(l/Z)szs(y—clt)Tzet, ©))

in the comoving frame of reference the differential operator
can be expressed in the following manner

(1/2)8 7_8 a 0 ad

a
—te—,— =e——c1e—. (10)
ax 9X'ay dy ‘oY ar  aT oY

The perturbed stream function and perturbed magnetic fields
are expanded as

{ v =ey +e%DyYr+etYs+ ..,

W =¢ehi+eCPhy+2h3+.... an

Using Egs. (9), (10) and (11) into Eq. (7) we get from the
lowest order i.e. O(s3/2):

: @~ co) (aj;m)ﬂ(y)m_mﬁ( D=0y
(_CO+CB) X oy +ﬂBax(w1)— 0

Next order O (g2) gives

@—cn e (58)+p0) 5 =~ 1 e

(dT ‘1 BY) aafﬁl’ (13)

(& —c1 &) hi+ @ —co+cp) 22 4 g U2

From the second set of Eq. (13), we get

oh — 9 1 9 9
M Bs Yo _ 2 o (14)
X u—co+cpg 0X (u—co+cp) aT BY
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Next order O (/%) gives

(= cop) 8X ( 1’02)4‘]7()’) s _%%

33
:—(M_CO) 8X3 —2(u— CO)WI%},

9 a%V2 By @ Ay 9 (9*
o —cray) 57 _% a;//] + ok (55
(iT c1 ay)h2 +Bp BX —(“_CO"‘CB)LX
4oy oy 3y Bk
9X oY — Y oX -
(15)
Equation (15b) gives
dh3 0 d oYr3
- i — 1\ e
ox <8T “l ay> 2+ Pey
Yy 0hy 0 Ohy
- —_——— —— 16
ot en) T 5y T oy ax (16)
Assume that Eq. (12) has the solution
Vi =AXY,T) e (y) (17)

Thus, from Egs. (12) and (20) we get the following linear
dispersion relation

) B3 1

" 2 g )+ 2B =0, (18
C a0 Y s e —coten” (%)
and from the boundary condition given by Eq. (5) we get

91 (0) =¢1 (1) =0. 19

The obtained Eq. (18) is the Rayleigh-Kuo equation describ-
ing the Rossby-Khantadze waves. By solving Eq. (12) si-
multaneously and the coefficients are locally constant and
U (y) = const., we get the following dispersion equation

(£-vm)@+ro) (& -vm-a)-a=o @

2
where ki = k)% + k% and o = %. Equation (20) describes
the dispersion equation of sheared Rossby-Khantadze waves.
In the absence of o we get two solutions, one independent
solution of Rossby waves and the second one for Khantadze
waves.
By introducing the dimensionless variables kxid = vp and

Kd = k2 (with d = =20 and p= beq ) then we
rewrlte the dispersion relatlon (20)

1
Up =—U—|—ﬁcos)\0( kJ_—I:I:,/(l—kJ_)Z-l—kJ_aO) (21)
L
Here oy = @ = CB‘ 5 For the E-ionosphere layer, the

parameters have the followmg Beq =0.5x 107 A, 290 =
10742 2~ 1078 —107°, p = (1077 — 10~ S)kgm , the
parameter og =(10" 2_ 1) (Kaladze et al., 2011).

Figure 1 represents the phase velocity vy of the obtained
coupled Rossby-Khantadze waves is plotted with wave num-
ber k| by varying . Red curve vy is for “+” and blue v
is for “~” signs before the radicand in Eq. (21).
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Figure 1. Normalized phase velocity vs normalized wave of cou-
pled Rossby-Khantadze waves for 1y = /4 is shown.

4 Derivation for the nonlinear Boussinesq Equation

In this section, by taking into account the separation of vari-

ables techniques we will derive the nonlinear Boussinesq

Equation describing the solitary nonlinear structures.
Further, we assume that Eq. (13) has the solution

Yo =21 + V22, (22)
with
Yo =B (X, Y, T) p1(y), Y22 =B> (X, Y, T)pnn(y), (23)

By using the separation of variables approach and using
Egs. (22) and (23) in Eq. (13) we obtain

9B,
(&t —co) W $22
Bz 0B
+lpO)+ — —
( o p (cp+u—co)
A oc] A
=1 — - 24
=%y Y " e riimc? ar” @9
Put
0B 0A 0B 0A
R - 42 = 25)

X "ot M ax Toar
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From Eq. (24) we get

021" +9 (NP2 = ——2— + v o (26)
u—c,

©21(0) = @21 (1) =0. 27

with ¢ (y) and y are given by q(y)=pO)+

/33 1

L N S B
pop * (u—co)(u— 60+63)/(u Co)iy = ROP (—co)(@—co+cp)®
And
" cig”
¢ 4 en=————cne, (28)

o

The boundary conditions are given by
$22(0) =922 (1) =0. (29)
From Egs. (26) and (28) we have

20 = —C1 P21 (30)

In order to arrive at the evolution equation, we use Eqgs. (20),
(25) and (26) and substitute into Eq. (15)

3 (9203 I3
—c)— (L2 )+ p ) L2 = F, 31
@ CO)ax( 3y? ) PO Ty @D

where

8231
aYoX

F= _§021//ﬂ — @2
oToX

" 4

3232 +
—— C
aT9X 1921

+e ” 2 1++

1921 Syax (Cp+1i— o)

A 3
—(u—co)(plm—Z(u—co)gol X2y

ZA o

9
_ " _ o' or") 2 A +
(101" —pr'e1") 24— P —

32 a2 , 8°
2 ot 122 )a 32
(3T2 618T8Y+C]8Y2> el 2)

Equation (31) is the evolution equation for W3 and we ob-
tain its solution by multiplying by ¢1(y) and then integrating
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over y to get

1

/ v1(y) . 7" a2B1 . ” 32B2
7—co 20 STax 2 Grox
0
3231
Vi
+c1¢21 3Y9X
" 2 (24
1
taeayax < t e +ﬁ—co)2>
_ 9*A -~ 3
— (U —co)ep X% 2(u —co)e1 %77
92A
_ 1" _ / " 2A
(p101" — 01’ 01") e
o
(cg 41 —cp)?
92 92 92
— 2 —— +?— | Ag; |d 33
(aT2 ClaTay’4'claY2> ¢1} yo 689
I 8231 3232 3231 3232
Yaxor T Caxar  "loxay T “'axay
+1 84A+1 A +1‘A32A
Sox* T Maxzay T ax2
l 32A 5 32A e 20%A 34
A 5. A
o912~ “aray T ay2 T
where the coefficients are:
1 y(i—co)
— u—cop
__én <¢21 (1'1L 9 ) 7%?6>
(1 + (cp+u— 60)2>dy;
g @—co)\ ¢
b= [ 42 (gt (14 15500) £22)
o .
(l + (CB-W—CO)Z) dy;
) i
bL—cil = zclf (6114 }CW)]Z (1 + V(uq co))
(1 N co+c3)2)dy’ (35)

|
I =— [¢dy;
0

1
Iy= =2 ¢191'dy;
0

’3

{‘ 1o

S \

=

o

32A 2924
<arz —2e1fy +e 13y2)
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Noting that

9’Bi _ 9*A_09°By _ 9%A

AXoT ~ 9T2’ 3XoT 9YoT
9B _0A 0By A

A = = —— (36)
0X 0T 00X aY
By using Eq. (36) in Eq. (34) we obtain
92A (L —2cilg—ci ;)\ 9%A
oT2 I+ 1Ig aYoT
B Iec? —c1l 82_A+ I %A
I+ Ig Y2 I+ 1Ig3) 0X4
Is 9%A
A—=0 37
+<11+I6> ax> o7
Rewriting Eq. (37) as
92A N 92A N 92A N A N 92(A%) 0. (%)
— a a) —-= a3— a)———=— = U.
ar2 " aray T Payz T Paxt T M ax2
where
(I2 —2c1lg —c11h) c1h
ay = s 2 ==,
I+ Ig I
Iz Is
== a=-—>. 39
az 2 as o (39)

This equation describes the evolution of spatial-temporal
amplitude A(X,Y,T) of Rossby-Khantadze waves. When
I, =2c11g — c11; gives a; =0, our Eq. (38) reduces to the
standard Boussinesq equation ((2 4 1) — dimensional). Oth-
erwise, Eq. (38) is the general form of Boussinesq equation
(i.e. a; =0).

5 Dynamical Analysis for the New Boussinesq equation

In order to solve the generalized Boussinesq equation, we
follow the methodology developed by Kaladze et al. (2013b)
and later make use of methods of dynamical analysis to get
extended information about the solution of the equation, and
to obtain its trajectories and fixed points in phase space.

We use the following co-moving frame A = & (§) with
E=mX +nY + T to turn Eq. (39) into an ordinary dif-
ferential equation. Then after integrating it once over & gives
us,

asm*@” + (> +ailn +am>) @ +asm*@? =g (40)

with g as the constant of integration.
We can now express Eq. (40) as a set of two first order
autonomous equations as

e _ .

& — Vs

dy —a4m2@2—(12+a|ln+a2nz)®+g (41)
dg — azm* :
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From Eq. (40) we express the Hamiltonian of the system as

1 asm?*@3 1>+ ayln + apn?
H(@,y) =3y = 20 2 . 2
2 3azm 2azm
+ S o= 42)
asm

where £ is a constant value.
In order to get the fixed points of our system, we suppose

(g—g) = 0 where @ is the fixed point. Such that,
a1
a4m2®%+<12+a1ln —|—a2n2>®1 —g=0. 43)

Equation (43) is a quadratic equation and has two roots,
which are given below

_ —(>+ ailn + apn?)? — VA

ar1= 2a4m? ’ “44)
and

o Sl s /B "
where

A= %>+ ailn + axn?)? +4a4m2g. (46)

Let go=|f (¢;)+gl, then gg is the extremum values of

f@+g.
Suppose (¢i,0) (where i =1, 2) be one of the singular

points of the system of equation, then from our system, the
characteristic values

1'(@)

aza*

A2 (¢i,0) =

Based on the qualitative theory for the dynamical system
we know that Eq. (44)

1. If % <0 then (¢;, 0) is a center point

ii. If %>0 then (¢;, o) is a saddle point
iii. If f/(¢p;) = 0 then (¢;, 0) is degenerate saddle point

Thus, above analysis provides the bifurcations phase por-
traits of Eq. (42).

6 Solution for the Boussinesq equation

In this part, based on this dynamical theory, we will deduce
the traveling wave solution to Eq. (42) by considering g = 0.
The Eq. (41) reduce to the system as follows

dg

& =)

47)
dy _ —a4m2®2—(12+a11n+a2n2)®
dg — azm* !
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It is expected that Eq. (41) has a homoclinic orbits I'; (which
corresponds to a solitary wave profile).
In ¢ — y plane, I'y is given as

2_2a4m2 3_(l2+allnj—a2n2)¢2’ 48)

T Bazm? azm

with ¢g = 3 (12 +ailn + agnz) /2a4m4.
Equations (47) and (48) give

1

2ay 3 (Ptailn+arn?) o
3a3m? ¢ azm4 ¢

d¢ = d§, (49)

Here we suppose that ¢ (0) = ¢, and integrate Eq. (49)
along homoclinic orbits I'1, we get

o ds ¢
/ - . :/ ds, <0 (50)
@ \/ 2a4 3 _ (“Hailn+tarn )sz £

S
3azm? azm*

=/0ds,é >0  (51)
¢

3
S
3a3 m? azm*

and
/'¢u ds
¢ \/ 2ay _ (2+ail n+aj n?) §2

Equations (50) and (51) give

3 +ailn +ayn?)
~ agm?[1 —cosh(n£)] ’

(52)

_ 3P 4aln +ayn?)
~ agm?[1+cosh(né)] ’

(53)

(I’+ail n+ap n?)
agm* :

From Egs. (52) and (53) along with transformation A =
¢E),E=mX +nY + 1T we get the solution of solitary
wave,

where n =

3% +ajln +ayn?

u (X, Y, T)= . (54
asm? |:1 — cosh —W%Mz) §i|
and
—3(? I 2
ur (X, Y. T) = Ctaln +an) (55)

2 2
aum? [1 +Cosh\/_(l+all"jazn)§]

azm

It is shown from the obtained solutions that the considered
Rossby-Khantadze waves are solitary in nature.

7 Discussion

In this paper, investigation of large-scale Rossby-Khantadze
nonlinear waves by incorporating sheared zonal flows in the

https://doi.org/10.5194/angeo-43-549-2025

ionospheric plasma found in the E-layer, is presented. The
spatially nonhomogeneous Earth’s angular velocity with the
background magnetic field are taken. The spatial inhomo-
geneity in the magnetic field allows the coupling of Rossby
and Khantadze waves named Rossby-Khantadze waves.

In this work, we considered a system of equations for
Boussinesq model equation from the initial set of equa-
tions namely, momentum equation, continuity equation and
Maxwell equation. This provides the nonlinear interaction of
considered Rossby-Khantadze waves. By taking the curl of
momentum equation, we obtain the vorticity equation which
is the first system of equation. We obtain the equation of
magnetic induction by using the Maxwell’s equation, by tak-
ing the parameters of the E layer of ionosphere into account.
The system of equations explains how Rossby-Khantadze
nonlinear waves propagate in considered sheared zonal flow
ionospheric E region. In earlier work, the authors take into
account Rossby waves while here we take coupled Rossby
and Khantadze waves. For the linear consideration, the linear
dispersion relation of the fast (Khantadze) and slow (Rossby)
electromagnetic (EM) wave in the ionospheric E-region is
analyzed with two modes of frequency w; and w>. The nu-
merical work of obtained frequencies is shown. The phase
velocities depending on wave number is shown in Fig. 1
(with red color describes w; while blue ones to w;). For
small wave vector, w| approaches to the finite value, while
for the w, becomes —oo. For small «g, strong coupling is
shown between two modes. With increasing «g the Rossby
modes approaches to the positive values, ergo at ag = 1, it
approaches to zero and for the values o> 1, its phase veloc-
ity approaches to positive value, while the waves with w; are
always propagating along the latitudinally westward direc-
tion. For large wave vector, both modes lose their dispersing
property.

In order to investigate the nonlinear behavior of coupled
RKWs we use multiple scale analysis and asymptotic ex-
pansion, to derive nonlinear Boussinesq equation with spa-
tially dependent coefficients. By using the method of mul-
tiple scale and hence considering finite amplitude pertur-
bations, we obtain a new Boussinesq ((2 4 1) dimensional)
equation. We have also presented the qualitative description
of dynamical systems. Thus, based on the ideas of this work,
we cannot only obtain the exact traveling wave solutions in
the future research, but can also do the stability analysis, and
determine the parameters at which the onset of chaos takes
place. Furthermore, this can help us to understand not only
the solitary profiles, but also the nonlinear periodic wave so-
Iutions associated to the Boussinesq equation.

By taking lowest order O(g%/?) of Eq. (7) we get an
eigen-value Eq. (21). This order, however, does not bring
information about the amplitude of the Rossby-Khantadze
waves. Thenceforth we use the next order, O(¢2) of Eq. (7)
and obtain non-singular solutions. The obtained equation
still doesn’t provide information about the wave amplitude.
Therefore, we need to go to the next order.
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Figure 2. The solutions in Eq. (54) are plotted for the parameters
Y=0m=n=1;a; =ap =0.01;a3 = —0.01; a4 = 10.

Figure 3. The solutions in Eq. (55) are plotted for the parameters
Y=0m=n=1;a; =ap =0.01;a3 = —0.01; a4 = 10.

The next order of Eq. (7) provides a longitudinal disper-
sion effect, which competes with a weak nonlinear effect.
This explains that if the perturbation problem has an effec-
tive solution, then the secular term F must be satisfied from
Eq. (34), otherwise the wave’s amplitude would be infinite
and have no significance in practice. By doing some mathe-
matical steps, from next order we get the nonlinear Boussi-
nesq Eq. (41). By considering g = 0, we also investigate the
dynamical analysis and have done a fixed points analysis an-
alytically. We also obtain the travelling solitary structures
shown in Figs. 2-3. The obtained results might be helpful
for understanding the data which is obtained by satellites or-
biting the earth’s ionosphere region.

The considered sheared RK waves give insights on large-
scale processes and are observed mainly during magnetic
storms as well as sub-storms, artificial explosions, earth-
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quakes, etc. Hence, for the future experimental work, the the-
oretical findings of Rossby-Khantadze electromagnetic type
oscillations will provide valuable information.

8 Summary and conclusion

This study has explored the nonlinear dynamics of Rossby-
Khantadze waves in weakly ionized ionospheric plasma, par-
ticularly emphasizing the presence of sheared zonal flows.
By deriving the boussinesq equation, which incorporates
nonlinearity, we have established a robust framework for an-
alyzing the propagation characteristics of Rossby-Khantadze
waves across the E-layer of the ionosphere.

The use of the multiple scale analysis and asymptotic ex-
pansion has led to the identification of solitary wave solutions
that exhibit significant variations influenced by different pa-
rameter values. Overall, the findings of this research not only
enhance our understanding of wave phenomena in the iono-
sphere but also have broader implications for various plasma
environments, including those found in space and laboratory
settings.
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