Damboldt, T. and Suessmann, P.: Consolidated Database of Worldwide Measured Monthly Medians of Ionospheric Characteristics
foF2 and M(3000)F2, INAG (Ionosonde Network Advisory Group) Bulletin 73,
https://www.ursi.org/files/CommissionWebsites/INAG/web-73/2012/damboldt_consolidated_database.pdf (last access: 4 November 2024), 2012.
Danilov, A. D. and Mikhailov, A. V.: F2-layer parameters long-term trends at the Argentine Islands and Port Stanley stations, Ann. Geophys., 19, 341–349, https://doi.org/10.5194/angeo-19-341-2001, 2001.
de Haro Barbás, B. F. and Elias, A. G.: Effect of the Inclusion of Solar Cycle 24 in the Calculation of
foF2 Long-Term Trend for Two Japanese Ionospheric Stations, Pure Appl. Geophys., 177, 1071–1078, https://doi.org/10.1007/s00024-019-02307-z, 2020.
de Haro Barbás, B. F., Elias, A. G., Venchiarutti, J. V., Fagre, M., Zossi, B. S., Tan Jun, G., and Medina, F. D.: MgII as a Solar Proxy to Filter F2-Region Ionospheric Parameters, Pure Appl. Geophys. 178, 4605–4618, https://doi.org/10.1007/s00024-021-02884-y, 2021.
Duran, T., Melendi, Y., Zossi, B. S., De Haro Barbás, B. F., Buezas, F. S., Juan, A., and Elias, A. G.: Contribution to ionospheric F2 region long-term trend studies through seasonal and diurnal pattern analysis, Global Planet. Change, 229, 104249, https://doi.org/10.1016/j.gloplacha.2023.104249, 2023.
Foppiano, A. J, Cid, L., and Jara, V.: Ionospheric long-term trends for South American mid-latitudes, J. Atmos. Sol.-Terr. Phys., 61, 717–723, https://doi.org/10.1016/S1364-6826(99)00025-5, 1999.
Jarvis, M. J., Jenkins, B., and Rodgers, G. A.: Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res., 103, 20775–20787, https://doi.org/10.1029/98JA01629, 1998.
Klimenko, M. V., Klimenko, V. V., Ratovsky, K. G., Zakharenkova, I. E., Yasyukevich, Y. V., Korenkova, N. A., Cherniak, I. V., and Mylnikova, A. A.: Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum, Adv. Space Res., 56, 1951–1960, 2015.
Laštovička, J.: A review of recent progress in trends in the upper atmosphere, J. Atmos. Sol.-Terr. Phys., 163, 2–13, https://doi.org/10.1016/j.jastp.2017.03.009, 2017.
Laštovička, J.: Long-Term Trends in the Upper Atmosphere, in: Upper Atmosphere Dynamics and Energetics, edited by: Wang, W., Zhang, Y., and Paxton, L. J., American Geophysical Union, Washington D.C., USA, 325–344, https://doi.org/10.1007/978-94-007-0326-1_30, 2021a.
Laštovička, J.: What is the optimum solar proxy for long-term ionospheric investigations?, Adv. Space Res., 67, 2–8, https://doi.org/10.1016/j.asr.2020.07.025, 2021b.
Laštovička, J.: Dependence of long-term trends in
foF2 at middle latitudes on different solar activity proxies, Adv. Space Res., 73, 685–689, https://doi.org/10.1016/j.asr.2023.09.047, 2024.
Laštovička, J. and Burešová, D.: Relationships between
foF2 and various solar activity proxies, Space Weather, 21, e2022SW003359, https://doi.org/10.1029/2022SW003359, 2023.
Laštovička, J., Solomon, S., and Qian, L.: Trends in the Neutral and Ionized Upper Atmosphere, Space Sci. Rev., 168, 113–145, https://doi.org/10.1007/s11214-011-9799-3, 2012.
Laštovička, J., Beig, G., and Marsh, D. R.: Response of the mesosphere-thermosphere-ionosphere system to global change-CAWSES-II contribution, Prog. Earth Planet. Sci., 1, 21, https://doi.org/10.1186/s40645-014-0021-6, 2014.
Richards, P. G., Meier, R. R., Chen, S.-P., Drob, D. P., and Dandenault, P.: Investigation of the causes of the longitudinal variation of the electron density in the Weddell Sea Anomaly, J. Geophys. Res.-Space, 122, 6562–6583, https://doi.org/10.1002/2016JA023565, 2017.
Richards, P. G., Meier, R. R., Chen, S., and Dandenault, P.: Investigation of the causes of the longitudinal and solar cycle variation of the electron density in the Bering Sea and Weddell Sea anomalies, J. Geophys. Res.-Space, 123, 7825–7842, https://doi.org/10.1029/2018JA025413, 2018.
Rishbeth, H.: A greenhouse effect in the ionosphere?, Planet. Space Sci., 38, 945–948, 1990.
Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441–1444, 1989.
Sharan, A. and Kumar, S.: Long-term trends of the F2-region at mid-latitudes in the Southern Hemisphere, J. Atmos. Solar-Terr. Phys., 220, 105683, https://doi.org/10.1016/j.jastp.2021.105683, 2021.
Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, R.: Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24, J. Space Weather Space Clim., 4, A04, https://doi.org/10.1051/swsc/2014001, 2014.
Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L., and Vitt, F. M.: Whole atmosphere simulation of anthropogenic climate change, Geophys. Res. Lett., 45, 1567–1576, https://doi.org/10.1002/2017GL076950, 2018.
University of Bremen: Mg II solar activity index, University of Bremen [data set],
https://www.iup.uni-bremen.de/UVSAT/data/, last access: 5 December 2024.
Viereck, R. A., Floyd, L. E., Crane, P. C., Woods, T. N., Knapp, B. G., Rottman, G., Weber, M., Puga, L. C., and DeLand, M. T.: A composite Mg II index spanning from 1978 to 2003, Space Weather, 2, S10005, https://doi.org/10.1029/2004SW000084, 2004.
Zakharenkova, I., Cherniak, I., and Shagimuratov, I.: Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements, J. Atmos. Sol.-Terr. Phys., 161, 105–117, https://doi.org/10.1016/j.jastp.2017.06.014, 2017.
Zalizovski, A., Stanislawska, I., Lisachenko, V., and Charkina, O.: Variability of Weddell Sea ionospheric anomaly as deduced from observations at the Akademik Vernadsky station, Ukrainian Antarctic Journal, 1, 47–55, https://doi.org/10.33275/1727-7485.1.2021.666, 2021.