Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-383-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-383-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distinct ionospheric long-term trends in Antarctica due to the Weddell Sea Anomaly
Marayén Canales
CORRESPONDING AUTHOR
Departamento de Geofísica, Universidad de Concepción, Concepción, 4070386, Chile
Trinidad Duran
Departamento de Física, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
Manuel Bravo
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Andriy Zalizovski
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 61002, Kharkiv, Ukraine
National Antarctic Scientific Center of Ukraine, 01601, Kyiv, Ukraine
Space Research Centre of Polish Academy of Sciences, 00-716, Warsaw, Poland
Alberto Foppiano
Centro de Instrumentación Científica, Universidad Adventista de Chile, Chillán, 3780000, Chile
Related authors
Adán Y. Godoy, Manuel A. Bravo, Benjamín A. Urra, Carlos A. Castillo-Rivera, Marayén R. Canales, and Alberto J. Foppiano
EGUsphere, https://doi.org/10.5194/egusphere-2025-5416, https://doi.org/10.5194/egusphere-2025-5416, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Long-term analysis of 16 solar eclipses over south-central Chile using historical ionograms (1958–2024). Layer-dependent ionospheric responses were quantified, and fragile analog records were rescued and digitized, providing unique insights into eclipse-induced ionospheric variability.
Adán Y. Godoy, Manuel A. Bravo, Benjamín A. Urra, Carlos A. Castillo-Rivera, Marayén R. Canales, and Alberto J. Foppiano
EGUsphere, https://doi.org/10.5194/egusphere-2025-5416, https://doi.org/10.5194/egusphere-2025-5416, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Long-term analysis of 16 solar eclipses over south-central Chile using historical ionograms (1958–2024). Layer-dependent ionospheric responses were quantified, and fragile analog records were rescued and digitized, providing unique insights into eclipse-induced ionospheric variability.
Manuel A. Bravo, Joel H. Fernández, Adán Godoy, Jackson E. Pérez, Benjamín A. Urra, Antonela Ore, Enrique A. Carrasco, Juan J. Soria, Enrique D. Rojo, Carlos E. Saavedra, Elías M. Ovalle, Sulamita M. Ramos, Helen C. Meza, Giancarlo E. Mayhuire, Pedro Quispe, Eduardo Vigo, and Orlando Poma
EGUsphere, https://doi.org/10.5194/egusphere-2025-3155, https://doi.org/10.5194/egusphere-2025-3155, 2025
Short summary
Short summary
We studied how solar eclipses affect the electric field in the atmosphere and the movement of charged particles above Earth near the magnetic equator. Using ground-based instruments in Peru, we found that eclipses can lead to significant changes, depending on weather conditions. These results help us better understand how solar events influence the near-Earth environment and its connection to the upper atmosphere.
Trinidad Duran, Bruno Santiago Zossi, Yamila Daniela Melendi, Blas Federico de Haro Barbas, Fernando Salvador Buezas, and Ana Georgina Elias
Ann. Geophys., 42, 473–489, https://doi.org/10.5194/angeo-42-473-2024, https://doi.org/10.5194/angeo-42-473-2024, 2024
Short summary
Short summary
Our research investigates how different proxies of solar activity influence long-term trends in the Earth's ionosphere. By analyzing data from two mid-latitude stations up to 2022, we found that the choice of solar activity measures significantly affects trends in ionospheric electron density, while trends in ionospheric height remain more stable. Selecting the correct solar activity measure is crucial for accurate density trend predictions and improving space weather forecasting models.
Bruno S. Zossi, Trinidad Duran, Franco D. Medina, Blas F. de Haro Barbas, Yamila Melendi, and Ana G. Elias
Atmos. Chem. Phys., 23, 13973–13986, https://doi.org/10.5194/acp-23-13973-2023, https://doi.org/10.5194/acp-23-13973-2023, 2023
Short summary
Short summary
The International Reference Ionosphere (IRI) is a widely used ionospheric empirical model based on observations from a worldwide network of ionospheric stations. It is reasonable, then, to expect that it captures long-term changes in ionospheric parameters linked to trend forcings like greenhouse gases increasing concentration and the Earth's magnetic field secular variation. We show that the IRI model can be a valuable tool for obtaining preliminary approximations of experimental trends.
Cited articles
Alfonsi, L., De Franceschi, G., and Perrone, L.: Long term trend in the high latitude ionosphere, Phys. Chem. Earth Pt. C, 26, 303–307, https://doi.org/10.1016/S1464-1917(01)00003-4, 2001.
Australian Space Weather Forecasting Centre: Index of /wdc/iondata/medians, Australian Space Weather Forecasting Centre [data set], https://downloads.sws.bom.gov.au/wdc/iondata/medians/ (last access: 4 November 2024), 2024.
Bellchambers, W. H. and Piggott, W. R.: Ionospheric measurements made at Halley Bay, Nature, 182, 1596–1597, 1958.
Bremer, J., Damboldt, T., Mielich, J., and Suessmann, P.: Compar-ing long-term trends in the ionospheric F2-region with two dif-ferent methods, J. Atmos. Sol.-Terr. Phys., 77, 174–185, 2012.
Cnossen, I. and Franzke, C.: The role of the Sun in long-term change in the F2 peak ionosphere: New insights from EEMD and numerical modeling, J. Geophys. Res., 119, 8610–8623, https://doi.org/10.1002/2014JA020048, 2014.
Damboldt, T. and Suessmann, P.: Consolidated Database of Worldwide Measured Monthly Medians of Ionospheric Characteristics foF2 and M(3000)F2, INAG (Ionosonde Network Advisory Group) Bulletin 73, https://www.ursi.org/files/CommissionWebsites/INAG/web-73/2012/damboldt_consolidated_database.pdf (last access: 4 November 2024), 2012.
Danilov, A. D. and Mikhailov, A. V.: F2-layer parameters long-term trends at the Argentine Islands and Port Stanley stations, Ann. Geophys., 19, 341–349, https://doi.org/10.5194/angeo-19-341-2001, 2001.
de Haro Barbás, B. F. and Elias, A. G.: Effect of the Inclusion of Solar Cycle 24 in the Calculation of foF2 Long-Term Trend for Two Japanese Ionospheric Stations, Pure Appl. Geophys., 177, 1071–1078, https://doi.org/10.1007/s00024-019-02307-z, 2020.
de Haro Barbás, B. F., Elias, A. G., Venchiarutti, J. V., Fagre, M., Zossi, B. S., Tan Jun, G., and Medina, F. D.: MgII as a Solar Proxy to Filter F2-Region Ionospheric Parameters, Pure Appl. Geophys. 178, 4605–4618, https://doi.org/10.1007/s00024-021-02884-y, 2021.
Duran, T., Melendi, Y., Zossi, B. S., De Haro Barbás, B. F., Buezas, F. S., Juan, A., and Elias, A. G.: Contribution to ionospheric F2 region long-term trend studies through seasonal and diurnal pattern analysis, Global Planet. Change, 229, 104249, https://doi.org/10.1016/j.gloplacha.2023.104249, 2023.
Foppiano, A. J, Cid, L., and Jara, V.: Ionospheric long-term trends for South American mid-latitudes, J. Atmos. Sol.-Terr. Phys., 61, 717–723, https://doi.org/10.1016/S1364-6826(99)00025-5, 1999.
Jarvis, M. J., Jenkins, B., and Rodgers, G. A.: Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res., 103, 20775–20787, https://doi.org/10.1029/98JA01629, 1998.
Klimenko, M. V., Klimenko, V. V., Ratovsky, K. G., Zakharenkova, I. E., Yasyukevich, Y. V., Korenkova, N. A., Cherniak, I. V., and Mylnikova, A. A.: Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum, Adv. Space Res., 56, 1951–1960, 2015.
Kyoto World Data Center for Geomagnetism: WDC [data set], https://wdc.kugi.kyoto-u.ac.jp/index.html (last access: 5 December 2024), 2024.
Laštovička, J.: A review of recent progress in trends in the upper atmosphere, J. Atmos. Sol.-Terr. Phys., 163, 2–13, https://doi.org/10.1016/j.jastp.2017.03.009, 2017.
Laštovička, J.: Long-Term Trends in the Upper Atmosphere, in: Upper Atmosphere Dynamics and Energetics, edited by: Wang, W., Zhang, Y., and Paxton, L. J., American Geophysical Union, Washington D.C., USA, 325–344, https://doi.org/10.1007/978-94-007-0326-1_30, 2021a.
Laštovička, J.: What is the optimum solar proxy for long-term ionospheric investigations?, Adv. Space Res., 67, 2–8, https://doi.org/10.1016/j.asr.2020.07.025, 2021b.
Laštovička, J.: Dependence of long-term trends in foF2 at middle latitudes on different solar activity proxies, Adv. Space Res., 73, 685–689, https://doi.org/10.1016/j.asr.2023.09.047, 2024.
Laštovička, J. and Burešová, D.: Relationships between foF2 and various solar activity proxies, Space Weather, 21, e2022SW003359, https://doi.org/10.1029/2022SW003359, 2023.
Laštovička, J., Solomon, S., and Qian, L.: Trends in the Neutral and Ionized Upper Atmosphere, Space Sci. Rev., 168, 113–145, https://doi.org/10.1007/s11214-011-9799-3, 2012.
Laštovička, J., Beig, G., and Marsh, D. R.: Response of the mesosphere-thermosphere-ionosphere system to global change-CAWSES-II contribution, Prog. Earth Planet. Sci., 1, 21, https://doi.org/10.1186/s40645-014-0021-6, 2014.
Richards, P. G., Meier, R. R., Chen, S.-P., Drob, D. P., and Dandenault, P.: Investigation of the causes of the longitudinal variation of the electron density in the Weddell Sea Anomaly, J. Geophys. Res.-Space, 122, 6562–6583, https://doi.org/10.1002/2016JA023565, 2017.
Richards, P. G., Meier, R. R., Chen, S., and Dandenault, P.: Investigation of the causes of the longitudinal and solar cycle variation of the electron density in the Bering Sea and Weddell Sea anomalies, J. Geophys. Res.-Space, 123, 7825–7842, https://doi.org/10.1029/2018JA025413, 2018.
Rishbeth, H.: A greenhouse effect in the ionosphere?, Planet. Space Sci., 38, 945–948, 1990.
Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441–1444, 1989.
Sharan, A. and Kumar, S.: Long-term trends of the F2-region at mid-latitudes in the Southern Hemisphere, J. Atmos. Solar-Terr. Phys., 220, 105683, https://doi.org/10.1016/j.jastp.2021.105683, 2021.
Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, R.: Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24, J. Space Weather Space Clim., 4, A04, https://doi.org/10.1051/swsc/2014001, 2014.
Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L., and Vitt, F. M.: Whole atmosphere simulation of anthropogenic climate change, Geophys. Res. Lett., 45, 1567–1576, https://doi.org/10.1002/2017GL076950, 2018.
University of Bremen: Mg II solar activity index, University of Bremen [data set], https://www.iup.uni-bremen.de/UVSAT/data/, last access: 5 December 2024.
Upadhyay, H. O. and Mahajan, K. K.: Atmospheric greenhouse effect and ionospheric trends, Geophys. Res. Lett., 25, 3375–3378, https://doi.org/10.1029/98GL02503, 1998.
Viereck, R. A., Floyd, L. E., Crane, P. C., Woods, T. N., Knapp, B. G., Rottman, G., Weber, M., Puga, L. C., and DeLand, M. T.: A composite Mg II index spanning from 1978 to 2003, Space Weather, 2, S10005, https://doi.org/10.1029/2004SW000084, 2004.
Zakharenkova, I., Cherniak, I., and Shagimuratov, I.: Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements, J. Atmos. Sol.-Terr. Phys., 161, 105–117, https://doi.org/10.1016/j.jastp.2017.06.014, 2017.
Zalizovski, A., Stanislawska, I., Lisachenko, V., and Charkina, O.: Variability of Weddell Sea ionospheric anomaly as deduced from observations at the Akademik Vernadsky station, Ukrainian Antarctic Journal, 1, 47–55, https://doi.org/10.33275/1727-7485.1.2021.666, 2021.
Short summary
This study investigates an ionospheric anomaly in Antarctica that affects electron concentration during summer. We analyse data from four stations, revealing different trends depending on the season and time of day. Vernadsky shows strong influence of the anomaly, while Port Stanley is less affected, and other stations do not show a clear pattern. These results highlight how local phenomena can modify global trends, providing new information about the Earth's space environment.
This study investigates an ionospheric anomaly in Antarctica that affects electron concentration...