Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-37-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-37-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Longitudinally spaced observations of a magnetic-cloud-like structure embedded in a co-rotating interaction region
Megan L. Maunder
Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, UK
Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, UK
Robert Forsyth
Department of Physics, Imperial College London, London, SW7 2AZ, UK
David Barnes
STFC RAL Space, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, OX11 0QX, UK
Jackie A. Davies
STFC RAL Space, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, OX11 0QX, UK
Related subject area
Subject: Sun & heliosphere | Keywords: Propagation of CMEs in the heliosphere
Development of a formalism for computing in situ transits of Earth-directed CMEs – Part 2: Towards a forecasting tool
Pedro Corona-Romero and Pete Riley
Ann. Geophys., 38, 657–681, https://doi.org/10.5194/angeo-38-657-2020, https://doi.org/10.5194/angeo-38-657-2020, 2020
Short summary
Short summary
Solar storms are natural phenomena that affect technologies on which our societies are highly dependent. The understanding of solar storms and the capability to anticipate their effects on our technologies is of main interest to shield our societies. In this work we present a semi-empirical approach to increase our understanding of solar storms when they hit our planet. Additionally, we also preset a possible pathway to forecast the transits of solar storms by our planet's orbit.
Cited articles
Borovsky, J. E. and Denton, M. H.: Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res.-Space, 111, A07S08, https://doi.org/10.1029/2005JA011447, 2006. a
Bothmer, V. and Schwenn, R.: The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 16, 1–24, https://doi.org/10.1007/s00585-997-0001-x, 1998. a, b, c
Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., and Zurbuchen, T.: Merged interaction regions at 1 AU, J. Geophys. Res.-Space, 108, 1425, https://doi.org/10.1029/2003JA010088, 2003. a, b
Burlaga, L. F.: Magnetohydrodynamic Processes in the Outer Heliosphere, Space Sci. Rev., 39, 255–316, https://doi.org/10.1007/BF00173902, 1984. a, b
Burlaga, L. F.: Merged Interaction Regions, in: Interplanetary Magnetohydrodynamics, Oxford University Press, ISBN 9780195084726, https://doi.org/10.1093/oso/9780195084726.003.0008, 1995. a
Burlaga, L. F.: Terminology for ejecta in the solar wind, EOS Transactions, 82, 433–435, https://doi.org/10.1029/01EO00265, 2001. a
Crooker, N. U. and Intriligator, D. S.: A magnetic cloud as a distended flux rope occlusion in the heliospheric current sheet, J. Geophys. Res., 101, 24343–24348, https://doi.org/10.1029/96JA02129, 1996. a, b
Crooker, N. U., Siscoe, G. L., Shodhan, S., Webb, D. F., Gosling, J. T., and Smith, E. J.: Multiple heliospheric current sheets and coronal streamer belt dynamics, J. Geophys. Res., 98, 9371–9382, https://doi.org/10.1029/93JA00636, 1993. a
Crooker, N. U., Gosling, J. T., and Kahler, S. W.: Magnetic clouds at sector boundaries, J. Geophys. Res., 103, 301–306, https://doi.org/10.1029/97JA02774, 1998. a
Crooker, N. U., Kahler, S. W., Larson, D. E., and Lin, R. P.: Large-scale magnetic field inversions at sector boundaries, J. Geophys. Res.-Space, 109, A03108, https://doi.org/10.1029/2003JA010278, 2004. a, b
Dasso, S., Mandrini, C. H., Démoulin, P., and Luoni, M. L.: A new model-independent method to compute magnetic helicity in magnetic clouds, Astron. Astrophys., 455, 349–359, https://doi.org/10.1051/0004-6361:20064806, 2006. a
Davies, E. E., Forsyth, R. J., Good, S. W., and Kilpua, E. K. J.: On the Radial and Longitudinal Variation of a Magnetic Cloud: ACE, Wind, ARTEMIS and Juno Observations, Sol. Phys., 295, 157, https://doi.org/10.1007/s11207-020-01714-z, 2020. a
DiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L., and Solomon, S. C.: MESSENGER observations of flux ropes in Mercury's magnetotail, Plan. Space Sci., 115, 77–89, https://doi.org/10.1016/j.pss.2014.12.016, 2015. a
Eyles, C. J., Harrison, R. A., Davis, C. J., Waltham, N. R., Shaughnessy, B. M., Mapson-Menard, H. C. A., Bewsher, D., Crothers, S. R., Davies, J. A., Simnett, G. M., Howard, R. A., Moses, J. D., Newmark, J. S., Socker, D. G., Halain, J.-P., Defise, J.-M., Mazy, E., and Rochus, P.: The Heliospheric Imagers Onboard the STEREO Mission, Sol. Phys., 254, 387–445, https://doi.org/10.1007/s11207-008-9299-0, 2009. a
Farrugia, C. J., Berdichevsky, D. B., Möstl, C., Galvin, A. B., Leitner, M., Popecki, M. A., Simunac, K. D. C., Opitz, A., Lavraud, B., Ogilvie, K. W., Veronig, A. M., Temmer, M., Luhmann, J. G., and Sauvaud, J. A.: Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex, J. Atmos. Sol.-Terr. Phys., 73, 1254–1269, https://doi.org/10.1016/j.jastp.2010.09.011, 2011. a
Feng, H. Q., Wu, D. J., and Chao, J. K.: Size and energy distributions of interplanetary magnetic flux ropes, J. Geophys. Res.-Space, 112, A02102, https://doi.org/10.1029/2006JA011962, 2007. a
Foullon, C., Owen, C. J., Dasso, S., Green, L. M., Dandouras, I., Elliott, H. A., Fazakerley, A. N., Bogdanova, Y. V., and Crooker, N. U.: Multi-Spacecraft Study of the 21 January 2005 ICME. Evidence of Current Sheet Substructure Near the Periphery of a Strongly Expanding, Fast Magnetic Cloud, Sol. Phys., 244, 139–165, https://doi.org/10.1007/s11207-007-0355-y, 2007. a, b, c
Foullon, C., Lavraud, B., Wardle, N. C., Owen, C. J., Kucharek, H., and et al.: The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations, Sol. Phys., 259, 389–416, https://doi.org/10.1007/s11207-009-9452-4, 2009. a
Foullon, C., Lavraud, B., Luhmann, J. G., Farrugia, C. J., Retinò, A., Simunac, K. D. C., Wardle, N. C., Galvin, A. B., Kucharek, H., Owen, C. J., Popecki, M., Opitz, A., and Sauvaud, J.-A.: Plasmoid Releases in the Heliospheric Current Sheet and Associated Coronal Hole Boundary Layer Evolution, Astrophys. J., 737, 16 pp., https://doi.org/10.1088/0004-637X/737/1/16, 2011. a, b
Galvin, A. B., Kistler, L. M., Popecki, M. A., Farrugia, C. J., Simunac, K. D. C., Ellis, L., Möbius, E., Lee, M. A., Boehm, M., Carroll, J., Crawshaw, A., Conti, M., Demaine, P., Ellis, S., Gaidos, J. A., Googins, J., Granoff, M., Gustafson, A., Heirtzler, D., King, B., Knauss, U., Levasseur, J., Longworth, S., Singer, K., Turco, S., Vachon, P., Vosbury, M., Widholm, M., Blush, L. M., Karrer, R., Bochsler, P., Daoudi, H., Etter, A., Fischer, J., Jost, J., Opitz, A., Sigrist, M., Wurz, P., Klecker, B., Ertl, M., Seidenschwang, E., Wimmer-Schweingruber, R. F., Koeten, M., Thompson, B., and Steinfeld, D.: The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories, Space Sci. Rev., 136, 437–486, https://doi.org/10.1007/s11214-007-9296-x, 2008. a
Gazis, P. R.: Solar cycle variation in the heliosphere, Rev. Geophys., 34, 379–402, https://doi.org/10.1029/96RG00892, 1996. a
Gieseler, J., Dresing, N., Palmroos, C., Freiherr von Forstner, J. L., Price, D. J., Vainio, R., Kouloumvakos, A., Rodríguez-García, L., Trotta, D., Génot, V., Masson, A., Roth, M., and Veronig, A.: Solar-MACH: An open-source tool to analyze solar magnetic connection configurations, Front. Astron. Space Sci., 9, 1058810, https://doi.org/10.3389/fspas.2022.1058810, 2023. a
Gosling, J. T.: Coronal mass ejections in the solar wind at high solar latitudes: an overview, in: Solar Dynamic Phenomena and Solar Wind Consequences, Proceedings of the Third SOHO Workshop, Estes Park, Colorado, USA, 26-29 September 1994, 275, ESA Special Publication, Vol. 373, ISBN:9290921757, 1994. a
Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I., and Ross, C. L.: Direct Observations of a Flare Related Coronal and Solar Wind Disturbance, Sol. Phys., 40, 439–448, https://doi.org/10.1007/BF00162390, 1975. a
Gosling, J. T., Bame, S. J., McComas, D. J., Phillips, J. L., Scime, E. E., Pizzo, V. J., Goldstein, B. E., and Balogh, A.: A forward-reverse shock pair in the solar wind driven by over-expansion of a coronal mass ejection: Ulysses observations, Geophys. Res. Lett., 21, 237–240, https://doi.org/10.1029/94GL00001, 1994. a
Hess Webber, S. A., Karna, N., Pesnell, W. D., and Kirk, M. S.: Areas of Polar Coronal Holes from 1996 Through 2010, Sol. Phys., 289, 4047–4067, https://doi.org/10.1007/s11207-014-0564-0, 2014. a
Howard, T.: Coronal Mass Ejections: An Introduction, Springer New York, NY, https://doi.org/10.1007/978-1-4419-8789-1, 2011. a
Huttunen, K. E. J., Schwenn, R., Bothmer, V., and Koskinen, H. E. J.: Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23, Ann. Geophys., 23, 625–641, https://doi.org/10.5194/angeo-23-625-2005, 2005. a
Kaiser, M. L., Kucera, T. A., Davila, J. M., St. Cyr, O. C., Guhathakurta, M., and Christian, E.: The STEREO Mission: An Introduction, Space Sci. Rev., 136, 5–16, https://doi.org/10.1007/s11214-007-9277-0, 2008. a
Kay, C., Nieves-Chinchilla, T., Hofmeister, S. J., Palmerio, E., and Ledvina, V. E.: A Series of Advances in Analytic Interplanetary CME Modeling, Space Weather, 21, e2023SW003647, https://doi.org/10.1029/2023SW003647, 2023. a
Kilpua, E., Koskinen, H. E. J., and Pulkkinen, T. I.: Coronal mass ejections and their sheath regions in interplanetary space, Living Rev. Sol. Phys., 14, 83 pp., https://doi.org/10.1007/s41116-017-0009-6, 2017. a, b
Kilpua, E. K. J., Jian, L. K., Li, Y., Luhmann, J. G., and Russell, C. T.: Observations of ICMEs and ICME-like Solar Wind Structures from 2007–2010 Using Near-Earth and STEREO Observations, Sol. Phys., 281, 391–409, https://doi.org/10.1007/s11207-012-9957-0, 2012. a, b, c, d
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res.-Space, 110, A02104, https://doi.org/10.1029/2004JA010649, 2005. a
Lavraud, B., Fargette, N., Réville, V., Szabo, A., Huang, J., Rouillard, A. P., Viall, N., Phan, T. D., Kasper, J. C., Bale, S. D., Berthomier, M., Bonnell, J. W., Case, A. W., de Wit, T. D., Eastwood, J. P., Génot, V., Goetz, K., Griton, L. S., Halekas, J. S., Harvey, P., Kieokaew, R., Klein, K. G., Korreck, K. E., Kouloumvakos, A., Larson, D. E., Lavarra, M., Livi, R., Louarn, P., MacDowall, R. J., Maksimovic, M., Malaspina, D., Nieves-Chinchilla, T., Pinto, R. F., Poirier, N., Pulupa, M., Raouafi, N. E., Stevens, M. L., Toledo-Redondo, S., and Whittlesey, P. L.: The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe’s First Orbit, Astrophys. J. Lett., 894, 8 pp., https://doi.org/10.3847/2041-8213/ab8d2d, 2020. a
Lepping, R. P., Jones, J. A., and Burlaga, L. F.: Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11957–11965, https://doi.org/10.1029/JA095iA08p11957, 1990. a, b, c
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer, F. M., Whang, Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V., Scheifele, J., and Worley, E. M.: The Wind Magnetic Field Investigation, Space Sci. Rev., 71, 207–229, https://doi.org/10.1007/BF00751330, 1995. a
Lepping, R. P., Wu, C. C., and Berdichevsky, D. B.: Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties, Ann. Geophys., 23, 2687–2704, https://doi.org/10.5194/angeo-23-2687-2005, 2005. a
Liu, Y., Richardson, J. D., Belcher, J. W., Wang, C., Hu, Q., and Kasper, J. C.: Constraints on the global structure of magnetic clouds: Transverse size and curvature, J. Geophys. Res.-Space, 111, A12S03, https://doi.org/10.1029/2006JA011890, 2006. a
Lopez, R. E.: Solar cycle invariance in solar wind proton temperature relationships, J. Geophys. Res., 92, 11189–11194, https://doi.org/10.1029/JA092iA10p11189, 1987. a
Luhmann, J. G., Curtis, D. W., Schroeder, P., McCauley, J., Lin, R. P., Larson, D. E., Bale, S. D., Sauvaud, J. A., Aoustin, C., Mewaldt, R. A., Cummings, A. C., Stone, E. C., Davis, A. J., Cook, W. R., Kecman, B., Wiedenbeck, M. E., von Rosenvinge, T., Acuna, M. H., Reichenthal, L. S., Shuman, S., Wortman, K. A., Reames, D. V., Mueller-Mellin, R., Kunow, H., Mason, G. M., Walpole, P., Korth, A., Sanderson, T. R., Russell, C. T., and Gosling, J. T.: STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview, Space Sci. Rev., 136, 117–184, https://doi.org/10.1007/s11214-007-9170-x, 2008. a, b
Marubashi, K.: Structure of the interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6, 335–338, https://doi.org/10.1016/0273-1177(86)90172-9, 1986. a
Marubashi, K.: Interplanetary Magnetic Flux Ropes and Solar Filaments, in: Coronal Mass Ejections, edited by: Crooker, N., Joselyn, J. A., and Feynman, J., https://doi.org/10.1029/GM099p0147, 1997. a
Maunder, M. L.: Multi-Spacecraft Investigations of Solar and Interplanetary Coronal Mass Ejections in Complex Solar Wind Environments, Ph.D. thesis, University of Exeter, UK, http://hdl.handle.net/10871/133256 (last access: 1 December 2024), 2023. a
Maunder, M. L., Foullon, C., Forsyth, R., Barnes, D., and Davies, J.: Multi-Spacecraft Observations of an Interplanetary Coronal Mass Ejection Interacting with Two Solar-Wind Regimes Observed by the Ulysses and Twin-STEREO Spacecraft, Sol. Phys., 297, 148, https://doi.org/10.1007/s11207-022-02077-3, 2022. a, b
Möstl, C., Farrugia, C. J., Miklenic, C., Temmer, M., Galvin, A. B., Luhmann, J. G., Kilpua, E. K. J., Leitner, M., Nieves-Chinchilla, T., Veronig, A., and Biernat, H. K.: Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun, J. Geophys. Res.-Space, 114, A04102, https://doi.org/10.1029/2008JA013657, 2009. a
Mulligan, T., Russell, C. T., and Luhmann, J. G.: Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 25, 2959–2962, https://doi.org/10.1029/98GL01302, 1998. a
Owens, M. J., Cargill, P. J., Pagel, C., Siscoe, G. L., and Crooker, N. U.: Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res.-Space, 110, A01105, https://doi.org/10.1029/2004JA010814, 2005. a
Palmerio, E., Scolini, C., Barnes, D., Magdalenić, J., West, M. J., Zhukov, A. N., Rodriguez, L., Mierla, M., Good, S. W., Morosan, D. E., Kilpua, E. K. J., Pomoell, J., and Poedts, S.: Multipoint Study of Successive Coronal Mass Ejections Driving Moderate Disturbances at 1 AU, Astrophys. J., 878, 15 pp., https://doi.org/10.3847/1538-4357/ab1850, 2019. a
Parker, E. N.: Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophys. J., 128, 664, https://doi.org/10.1086/146579, 1958. a
Pizzo, V. J. and Gosling, J. T.: 3-D Simulation of high-latitude interaction regions: Comparison with Ulysses results, Geophys. Res. Lett., 21, 2063–2066, https://doi.org/10.1029/94GL01581, 1994. a, b, c
Plotnikov, I., Rouillard, A. P., Davies, J. A., Bothmer, V., Eastwood, J. P., Gallagher, P., Harrison, R. A., Kilpua, E., Möstl, C., Perry, C. H., Rodriguez, L., Lavraud, B., Génot, V., Pinto, R. F., and Sanchez-Diaz, E.: Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging, Sol. Phys., 291, 1853–1875, https://doi.org/10.1007/s11207-016-0935-9, 2016. a
Richardson, I. G.: Identification of Interplanetary Coronal Mass Ejections at Ulysses Using Multiple Solar Wind Signatures, Sol. Phys., 289, 3843–3894, https://doi.org/10.1007/s11207-014-0540-8, 2014. a
Richardson, I. G.: Solar wind stream interaction regions throughout the heliosphere, Living Rev. Sol. Phys., 15, 95 pp., https://doi.org/10.1007/s41116-017-0011-z, 2018. a, b
Richardson, I. G. and Cane, H. V.: Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta, J. Geophys. Res.-Space, 100, 23397–23412, https://doi.org/10.1029/95JA02684, 1995. a
Rodkin, D., Slemzin, V., Zhukov, A. N., Goryaev, F., Shugay, Y., and Veselovsky, I.: Single ICMEs and Complex Transient Structures in the Solar Wind in 2010–2011, Sol. Phys., 293, 78, https://doi.org/10.1007/s11207-018-1295-4, 2018. a
Rouillard, A. P., Davies, J. A., Forsyth, R. J., Rees, A., Davis, C. J., Harrison, R. A., Lockwood, M., Bewsher, D., Crothers, S. R., Eyles, C. J., Hapgood, M., and Perry, C. H.: First imaging of corotating interaction regions using the STEREO spacecraft, Geophys. Res. Lett., 35, L10110, https://doi.org/10.1029/2008GL033767, 2008. a
Rouillard, A. P., Savani, N. P., Davies, J. A., Lavraud, B., Forsyth, R. J., Morley, S. K., Opitz, A., Sheeley, N. R., Burlaga, L. F., Sauvaud, J. A., Simunac, K. D. C., Luhmann, J. G., Galvin, A. B., Crothers, S. R., Davis, C. J., Harrison, R. A., Lockwood, M., Eyles, C. J., Bewsher, D., and Brown, D. S.: A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams, Sol. Phys., 256, 307–326, https://doi.org/10.1007/s11207-009-9329-6, 2009. a, b, c, d
Rouillard, A. P., Davies, J. A., Lavraud, B., Forsyth, R. J., Savani, N. P., Bewsher, D., Brown, D. S., Sheeley, N. R., Davis, C. J., Harrison, R. A., Howard, R. A., Vourlidas, A., Lockwood, M., Crothers, S. R., and Eyles, C. J.: Intermittent release of transients in the slow solar wind: 1. Remote sensing observations, J. Geophys. Res.-Space, 115, A04103, https://doi.org/10.1029/2009JA014471, 2010a. a, b
Rouillard, A. P., Lavraud, B., Sheeley, N. R., Davies, J. A., Burlaga, L. F., Savani, N. P., Jacquey, C., and Forsyth, R. J.: White Light and In Situ Comparison of a Forming Merged Interaction Region, Astrophys. J., 719, 1385–1392, https://doi.org/10.1088/0004-637X/719/2/1385, 2010b. a
Russell, C. T. and Mulligan, T.: The true dimensions of interplanetary coronal mass ejections, Adv. Space Res., 29, 301–306, https://doi.org/10.1016/S0273-1177(01)00588-9, 2002. a
Sanchez-Diaz, E., Rouillard, A. P., Davies, J. A., Lavraud, B., Pinto, R. F., and Kilpua, E.: The Temporal and Spatial Scales of Density Structures Released in the Slow Solar Wind During Solar Activity Maximum, Astrophys. J., 851, 17 pp., https://doi.org/10.3847/1538-4357/aa98e2, 2017. a
Shugay, Y., Slemzin, V., Rodkin, D., Yermolaev, Y., and Veselovsky, I.: Influence of coronal mass ejections on parameters of high-speed solar wind: a case study, J. Space Weather Spac., 8, 13 pp., https://doi.org/10.1051/swsc/2018015, 2018. a
Smith, E. J. and Wolfe, J. H.: Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res. Lett., 3, 137–140, https://doi.org/10.1029/GL003i003p00137, 1976. a
Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D., Ormes, J. F., and Snow, F.: The Advanced Composition Explorer, Space Sci. Rev., 86, 1–22, https://doi.org/10.1023/A:1005082526237, 1998. a
Telloni, D., Zank, G. P., Stangalini, M., Downs, C., Liang, H., Nakanotani, M., Andretta, V., Antonucci, E., Sorriso-Valvo, L., Adhikari, L., Zhao, L., Marino, R., Susino, R., Grimani, C., Fabi, M., D'Amicis, R., Perrone, D., Bruno, R., Carbone, F., Mancuso, S., Romoli, M., Deppo, V. D., Fineschi, S., Heinzel, P., Moses, J. D., Naletto, G., Nicolini, G., Spadaro, D., Teriaca, L., Frassati, F., Jerse, G., Landini, F., Pancrazzi, M., Russano, G., Sasso, C., Biondo, R., Burtovoi, A., Capuano, G. E., Casini, C., Casti, M., Chioetto, P., De Leo, Y., Giarrusso, M., Liberatore, A., Berghmans, D., Auchère, F., Cuadrado, R. A., Chitta, L. P., Harra, L., Kraaikamp, E., Long, D. M., Mandal, S., Parenti, S., Pelouze, G., Peter, H., Rodriguez, L., Schühle, U., Schwanitz, C., Smith, P. J., Verbeeck, C., and Zhukov, A. N.: Observation of a Magnetic Switchback in the Solar Corona, Astrophys. J. Lett., 936, L25, https://doi.org/10.3847/2041-8213/ac8104, 2022. a
Ventura, R., Antonucci, E., Downs, C., Romano, P., Susino, R., Spadaro, D., Telloni, D., Guglielmino, S. L., Capuano, G., Andretta, V., Landini, F., Jerse, G., Nicolini, G., Pancrazzi, M., Sasso, C., Da Deppo, V., Fineschi, S., Grimani, C., Heinzel, P., Moses, D., Naletto, G., Romoli, M., Stangalini, M., Teriaca, L., and Uslenghi, M.: Recurrent solar density transients in the slow wind observed with the Metis coronagraph, Astron. Astrophys., 675, 9 pp., https://doi.org/10.1051/0004-6361/202346623, 2023. a
Wang, Y. M., Sheeley, N. R., Socker, D. G., Howard, R. A., and Rich, N. B.: The dynamical nature of coronal streamers, J. Geophys. Res., 105, 25133–25142, https://doi.org/10.1029/2000JA000149, 2000. a
Winslow, R. M., Lugaz, N., Scolini, C., and Galvin, A. B.: First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A, Astrophys. J., 916, 10 pp., https://doi.org/10.3847/1538-4357/ac0821, 2021. a
Wu, C. C., Lepping, R. P., and Gopalswamy, N.: Relationships Among Magnetic Clouds, CMES, and Geomagnetic Storms, Sol. Phys., 239, 449–460, https://doi.org/10.1007/s11207-006-0037-1, 2006. a
Zurbuchen, T. H. and Richardson, I. G.: In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, Space Sci. Rev., 123, 31–43, https://doi.org/10.1007/s11214-006-9010-4, 2006. a
Short summary
Our research examines solar wind interactions with magnetic structures from the Sun. Observations at different longitudes near the ecliptic plane show the progression of interactions between a co-rotating interaction region and a magnetic-cloud-like structure. These interactions cause significant changes, including compression and wave formation, enhancing our understanding of the complex nature of solar wind impacting Earth's magnetic environment.
Our research examines solar wind interactions with magnetic structures from the Sun....