Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-17-2024
https://doi.org/10.5194/angeo-42-17-2024
Regular paper
 | 
06 Feb 2024
Regular paper |  | 06 Feb 2024

Estimating gradients of physical fields in space

Yufei Zhou and Chao Shen

Related authors

A new perspective and explanation for the formation of plasmaspheric shoulder structures
Hua Zhang, Guangshuai Peng, Chao Shen, and Yewen Wu
Ann. Geophys., 39, 701–707, https://doi.org/10.5194/angeo-39-701-2021,https://doi.org/10.5194/angeo-39-701-2021, 2021
Short summary
Strong southward and northward currents observed in the inner plasma sheet
Yan-Yan Yang, Chao Shen, and Yong Ji
Ann. Geophys., 37, 931–941, https://doi.org/10.5194/angeo-37-931-2019,https://doi.org/10.5194/angeo-37-931-2019, 2019
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Instruments and techniques
Magnetometer in-flight offset accuracy for the BepiColombo spacecraft
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020,https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Beam tracking strategies for fast acquisition of solar wind velocity distribution functions with high energy and angular resolutions
Johan De Keyser, Benoit Lavraud, Lubomir Přech, Eddy Neefs, Sophie Berkenbosch, Bram Beeckman, Andrei Fedorov, Maria Federica Marcucci, Rossana De Marco, and Daniele Brienza
Ann. Geophys., 36, 1285–1302, https://doi.org/10.5194/angeo-36-1285-2018,https://doi.org/10.5194/angeo-36-1285-2018, 2018
Short summary

Cited articles

Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric Multiscale Overview and Science Objectives, Space Sci. Rev., 199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2015. a, b
Chanteur, G.: Spatial Interpolation for Four Spacecraft: Theory, in: Analysis Methods for Multi-Spacecraft Data, edited by: Paschmann, G. and Daly, P. W., p. 349, ESA Publications Division, Noordwijk, the Netherlands, ISBN: 1608-280X, 1998. a, b, c
De Keyser, J.: Least-squares multi-spacecraft gradient calculation with automatic error estimation, Ann. Geophys., 26, 3295–3316, https://doi.org/10.5194/angeo-26-3295-2008, 2008. a, b, c, d
De Keyser, J., Darrouzet, F., Dunlop, M. W., and Décréau, P. M. E.: Least-squares gradient calculation from multi-point observations of scalar and vector fields: methodology and applications with Cluster in the plasmasphere, Ann. Geophys., 25, 971–987, https://doi.org/10.5194/angeo-25-971-2007, 2007. a, b, c, d, e, f
Download
Short summary
Multiple spacecraft can operate jointly to detect quantities that are unattainable with a single spacecraft. Present constellations typically consist of four spacecraft, and it is established that a planar distribution of the spacecraft should be avoided. This study addresses the configuration problem for future missions of more spacecraft to measure physical gradients of higher orders. As for quadratic gradients, spacecraft must not be on any quadric surface, such as a sphere or cylinder.