Articles | Volume 41, issue 1
https://doi.org/10.5194/angeo-41-129-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-129-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of intermittent structures on the spectral index of the magnetic field in the slow solar wind
School of Space and Environment, Beihang University,
Beijing 100083, China
Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100804, China
Xuanhao Fan
School of Space and Environment, Beihang University,
Beijing 100083, China
Yuxin Wang
School of Space and Environment, Beihang University,
Beijing 100083, China
Honghong Wu
School of Electronic Information, Wuhan University, Wuhan
430072, China
Lei Zhang
Qian Xuesen Laboratory of Space Technology,
Beijing 100094, China
Related authors
No articles found.
L. Zhang, L.-P. Yang, J.-S. He, C.-Y. Tu, L.-H. Wang, E. Marsch, and X.-S. Feng
Ann. Geophys., 33, 13–23, https://doi.org/10.5194/angeo-33-13-2015, https://doi.org/10.5194/angeo-33-13-2015, 2015
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Turbulence
Scaling laws in Hall inertial-range turbulence
On the ion-inertial-range density-power spectra in solar wind turbulence
Yasuhito Narita, Wolfgang Baumjohann, and Rudolf A. Treumann
Ann. Geophys., 37, 825–834, https://doi.org/10.5194/angeo-37-825-2019, https://doi.org/10.5194/angeo-37-825-2019, 2019
Short summary
Short summary
Scaling laws and energy spectra for the electric field, magnetic field, flow velocity, and density are theoretically derived for small-scale turbulence in space plasma on which the electrons behave as a fluid but the ions more as individual particles due to the difference in the mass (the Hall effect). Our theoretical model offers an explanation for the small-scale turbulence spectra measured in near-Earth space.
Rudolf A. Treumann, Wolfgang Baumjohann, and Yasuhito Narita
Ann. Geophys., 37, 183–199, https://doi.org/10.5194/angeo-37-183-2019, https://doi.org/10.5194/angeo-37-183-2019, 2019
Short summary
Short summary
Occasional deviations in density and magnetic power spectral densities in an intermediate frequency range are interpreted as an ion-inertial-range response to either the Kolmogorov or Iroshnikov–Kraichnan inertial-range turbulent velocity spectrum.
Cited articles
Alberti, T., Laurenza, M., Consolini, G., Milillo, A., Marcucci,
M. F., Carbone, V., and Bale, S. D.: On the Scaling Properties of
Magnetic-field Fluctuations through the Inner Heliosphere, Astrophys. J., 902, 84–91,
https://doi.org/10.3847/1538-4357/abb3d2, 2020. a
Bavassano, B., Dobrowolny, M., Fanfoni, G., Mariani, F., and Ness,
N. F.: Statistical Properties of Magnetohydrodynamic Fluctuations Associated
with High Speed Streams from HELIOS-2 Observations, Sol. Phys., 78, 373–384,
https://doi.org/10.1007/BF00151617, 1982. a
Boldyrev, S., Nordlund, Å., and Padoan, P.: Scaling Relations of
Supersonic Turbulence in Star-forming Molecular Clouds, Astrophys. J., 573, 678–684,
https://doi.org/10.1086/340758, 2002. a
Borovsky, J. E.: Flux tube texture of the solar wind: Strands of the
magnetic carpet at 1 AU?, J. Geophys. Res.-Space,
113, A08110, https://doi.org/10.1029/2007JA012684, 2008. a
Borovsky, J. E.: Contribution of Strong Discontinuities to the Power
Spectrum of the Solar Wind, Phys. Rev. Lett., 105, 111102,
https://doi.org/10.1103/PhysRevLett.105.111102, 2010. a, b, c
Borovsky, J. E. and Burkholder, B. L.: On the Fourier Contribution of
Strong Current Sheets to the High-Frequency Magnetic Power SpectralDensity of
the Solar Wind, J. Geophys. Res.-Space, 125,
e27307, https://doi.org/10.1029/2019JA027307, 2020. a, b, c, d
Borovsky, J. E. and Denton, M. H.: No Evidence for Heating of the Solar
Wind at Strong Current Sheets, Astrophys. J. Lett., 739, L61–L65,
https://doi.org/10.1088/2041-8205/739/2/L61, 2011. a
Borovsky, J. E. and Podesta, J. J.: Exploring the effect of current sheet
thickness on the high-frequency Fourier spectrum breakpoint of the solar
wind, J. Geophys. Res.-Space, 120, 9256–9268,
https://doi.org/10.1002/2015JA021622, 2015. a
Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Laboratory,
Living Rev. Sol. Phys., 10, 2–208, https://doi.org/10.12942/lrsp-2013-2, 2013. a
Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., and Bavassano,
B.: Identifying intermittency events in the solar wind, Planet. Space Sci., 49,
1201–1210, https://doi.org/10.1016/S0032-0633(01)00061-7, 2001. a
Bruno, R., Carbone, V., Sorriso-Valvo, L., and Bavassano, B.: On the
role of coherent and stochastic fluctuations in the evolving solar wind MHD
turbulence: Intermittency, in: Solar Wind Ten, edited by: Velli, M.,
Bruno, R., Malara, F., and Bucci, B., Vol. 679, American
Institute of Physics Conference Series, American Institute of Physics,
https://doi.org/10.1063/1.1618632, 2003. a
Burlaga, L. F.: Micro-Scale Structures in the Interplanetary Medium,
Sol. Phys., 4, 67–92, https://doi.org/10.1007/BF00146999, 1968. a, b
Burlaga, L. F.: Directional Discontinuities in the Interplanetary Magnetic
Field, Sol. Phys., 7, 54–71, https://doi.org/10.1007/BF00148406, 1969. a
Burlaga, L. F.: Multifractal structure of the interplanetary magnetic field:
Voyager 2 observations near 25 AU, 1987–1988, Geophys. Res. Lett., 18, 69–72,
https://doi.org/10.1029/90GL02596, 1991a. a
Burlaga, L. F.: Intermittent turbulence in the solar wind, J. Geophys. Res., 96,
5847–5851, https://doi.org/10.1029/91JA00087, 1991b. a
Burlaga, L. F., Ness, N. F., and Acuna, M. H.:
Multiscale structure of magnetic fields in the heliosheath, J. Geophys. Res.-Space, 111, A09112,
https://doi.org/10.1029/2006JA011850, 2006. a
Carbone, V.: Cascade model for intermittency in fully developed
magnetohydrodynamic turbulence, Phys. Rev. Lett., 71, 1546–1548,
https://doi.org/10.1103/PhysRevLett.71.1546, 1993. a
Chandran, B. D. G., Schekochihin, A. A., and Mallet, A.: Intermittency
and Alignment in Strong RMHD Turbulence, Astrophys. J., 807, 39,
https://doi.org/10.1088/0004-637X/807/1/39, 2015. a
Chen, C., Mallet, A., Yousef, T., Schekochihin, A., and Horbury, T.: Anisotropy
of Alfvénic turbulence in the solar wind and numerical simulations,
Mon. Not. R. Astron. Soc., 415, 3219–3226,
https://doi.org/10.1111/j.1365-2966.2011.18933.x, 2011. a, b
Chen, C. H. K., Bale, S. D., Bonnell, J. W., Borovikov, D., Bowen,
T. A., Burgess, D., Case, A. W., Chandran, B. D. G., de Wit, T. D.,
Goetz, K., Harvey, P. R., Kasper, J. C., Klein, K. G., Korreck,
K. E., Larson, D., Livi, R., MacDowall, R. J., Malaspina, D. M.,
Mallet, A., McManus, M. D., Moncuquet, M., Pulupa, M., Stevens,
M. L., and Whittlesey, P.: The Evolution and Role of Solar Wind Turbulence
in the Inner Heliosphere, Astrophys. J. Suppl. Ser., 246, 53–62, https://doi.org/10.3847/1538-4365/ab60a3,
2020. a
Cuesta, M. E., Parashar, T. N., Chhiber, R., and Matthaeus, W. H.:
Intermittency in the Expanding Solar Wind: Observations from Parker Solar
Probe (0.16 AU), Helios 1 (0.3–1 AU), and Voyager 1 (1–10 AU), Astrophys. J. Suppl. Ser., 259,
23–38, https://doi.org/10.3847/1538-4365/ac45fa, 2022. a
Dallas, V. and Alexakis, A.: Origins of the k−2 spectrum in decaying
Taylor-Green magnetohydrodynamic turbulent flows, Phys. Rev. E, 88, 053014,
https://doi.org/10.1103/PhysRevE.88.053014, 2013. a, b
Dudok de Wit, T.: Can high-order moments be meaningfully estimated from
experimental turbulence measurements?, Phys. Rev. E, 70, 055302,
https://doi.org/10.1103/PhysRevE.70.055302, 2004. a
Forman, M. A., Wicks, R. T., and Horbury, T. S.: Detailed Fit of
“Critical Balance” Theory to Solar Wind Turbulence Measurements, Astrophys. J.,
733, 76–83, https://doi.org/10.1088/0004-637X/733/2/76, 2011. a, b
Frisch, U.: Turbulence. The legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995. a
Greco, A., Chuychai, P., Matthaeus, W. H., Servidio, S., and Dmitruk,
P.: Intermittent MHD structures and classical discontinuities, Geophys. Res. Lett., 35,
L19111, https://doi.org/10.1029/2008GL035454, 2008. a
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and
Shraiman, B. I.: Fractal measures and their singularities: The
characterization of strange sets, Phys. Rev. A, 33, 1141–1151,
https://doi.org/10.1103/PhysRevA.33.1141, 1986. a
Horbury, T. S., Burgess, D., Fränz, M., and Owen, C. J.: Three
spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 28, 677–680,
https://doi.org/10.1029/2000GL000121, 2001. a
Horbury, T. S., Forman, M., and Oughton, S.: Anisotropic Scaling of
Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 101, 175005,
https://doi.org/10.1103/PhysRevLett.101.175005, 2008. a, b
Knetter, T., Neubauer, F. M., Horbury, T., and Balogh, A.: Four-point
discontinuity observations using Cluster magnetic field data: A statistical
survey, J. Geophys. Res.-Space, 109, A06102,
https://doi.org/10.1029/2003JA010099, 2004. a
Kolmogorov, A.: The Local Structure of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds' Numbers, Akademiia Nauk SSSR Doklady, 30,
301–305, 1941. a
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M.,
Slavin, J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer,
F. M., Whang, Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V.,
Scheifele, J., and Worley, E. M.: The Wind Magnetic Field
Investigation, Space Sci. Rev., 71, 207–229, https://doi.org/10.1007/BF00751330, 1995. a
Lin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D.,
Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G. K.,
Rème, H., Bosqued, J. M., Coutelier, J., Cotin, F., D'Uston,
C., Wenzel, K.-P., Sanderson, T. R., Henrion, J., Ronnet, J. C., and
Paschmann, G.: A Three-Dimensional Plasma and Energetic Particle
Investigation for the Wind Spacecraft, Space Sci. Rev., 71, 125–153,
https://doi.org/10.1007/BF00751328, 1995. a
Liu, Y. Y., Fu, H. S., Liu, C. M., Wang, Z., Escoubet, P., Hwang,
K. J., Burch, J. L., and Giles, B. L.: Parallel Electron Heating by
Tangential Discontinuity in the Turbulent Magnetosheath, Astrophys. J. Lett., 877, L16–L21,
https://doi.org/10.3847/2041-8213/ab1fe6, 2019. a
Liu, Y. Y., Fu, H. S., Cao, J. B., Liu, C. M., Wang, Z., Guo,
Z. Z., Xu, Y., Bale, S. D., and Kasper, J. C.: Characteristics of
Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker
Solar Probe, Astrophys. J., 916, 65–72, https://doi.org/10.3847/1538-4357/ac06a1, 2021. a
Luo, Q. Y. and Wu, D. J.: Observations of Anisotropic Scaling of Solar
Wind Turbulence, Astrophys. J. Lett., 714, L138–L141, https://doi.org/10.1088/2041-8205/714/1/L138,
2010. a, b
Macek, W. M. and Wawrzaszek, A.: Evolution of asymmetric multifractal
scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res.-Space, 114, A03108,
https://doi.org/10.1029/2008JA013795, 2009. a
Macek, W. M., Bruno, R., and Consolini, G.: Generalized dimensions for
fluctuations in the solar wind, Phys. Rev. E, 72, 017202,
https://doi.org/10.1103/PhysRevE.72.017202, 2005. a
Macek, W. M., Wawrzaszek, A., and Carbone, V.: Observation of the
multifractal spectrum in the heliosphere and the heliosheath by Voyager 1 and
2, J. Geophys. Res.-Space, 117, A12101,
https://doi.org/10.1029/2012JA018129, 2012. a
Marsch, E. and Tu, C. Y.: Non-Gaussian probability distributions of solar
wind fluctuations, Ann. Geophys., 12, 1127–1138,
https://doi.org/10.1007/s00585-994-1127-8, 1994. a, b
Marsch, E. and Tu, C. Y.: Intermittency, non-Gaussian statistics and
fractal scaling of MHD fluctuations in the solar wind, Nonlin.
Process. Geophys., 4, 101–124, https://doi.org/10.5194/npg-4-101-1997, 1997. a
Marsch, E., Tu, C. Y., and Rosenbauer, H.: Multifractal scaling of the
kinetic energy flux in solar wind turbulence, Ann. Geophys., 14,
259–269, https://doi.org/10.1007/s00585-996-0259-4, 1996. a
Miao, B., Peng, B., and Li, G.: Current sheets from Ulysses
observation, Ann. Geophys., 29, 237–249,
https://doi.org/10.5194/angeo-29-237-2011, 2011. a
Neugebauer, M., Clay, D. R., Goldstein, B. E., Tsurutani, B. T., and
Zwickl, R. D.: A reexamination of rotational and tangential
discontinuities in the solar wind, J. Geophys. Res., 89, 5395–5408,
https://doi.org/10.1029/JA089iA07p05395, 1984. a
NASA: Coordinated Data Analysis Web (CDAWeb), NASA [data set], https://cdaweb.gsfc.nasa.gov/, last access: 27 March 2023. a
Osman, K. T., Matthaeus, W. H., Greco, A., and Servidio, S.: Evidence
for Inhomogeneous Heating in the Solar Wind, Astrophys. J. Lett., 727, L11–L15,
https://doi.org/10.1088/2041-8205/727/1/L11, 2011. a, b
Osman, K. T., Matthaeus, W. H., Hnat, B., and Chapman, S. C.: Kinetic
Signatures and Intermittent Turbulence in the Solar Wind Plasma, Phys.
Rev. Lett., 108, 261103, https://doi.org/10.1103/PhysRevLett.108.261103,
2012a. a
Osman, K. T., Matthaeus, W. H., Wan, M., and Rappazzo, A. F.:
Intermittency and Local Heating in the Solar Wind, Phys. Rev. Lett.,
108, 261102, https://doi.org/10.1103/PhysRevLett.108.261102, 2012b. a
Osman, K. T., Matthaeus, W. H., Gosling, J. T., Greco, A., Servidio,
S., Hnat, B., Chapman, S. C., and Phan, T. D.: Magnetic Reconnection
and Intermittent Turbulence in the Solar Wind, Phys. Rev. Lett., 112, 215002,
https://doi.org/10.1103/PhysRevLett.112.215002, 2014. a
Paladin, G. and Vulpiani, A.: Anomalous scaling laws in multifractal
objects, Phys. Rep., 156, 147–225, https://doi.org/10.1016/0370-1573(87)90110-4,
1987. a
Parashar, T. N., Shay, M. A., Cassak, P. A., and Matthaeus, W. H.:
Kinetic dissipation and anisotropic heating in a turbulent collisionless
plasma, Phys. Plasmas, 16, 032310, https://doi.org/10.1063/1.3094062, 2009. a
Podesta, J. J.: Dependence of Solar-Wind Power Spectra on the Direction of
the Local Mean Magnetic Field, Astrophys. J., 698, 986–999,
https://doi.org/10.1088/0004-637X/698/2/986, 2009. a, b
Podesta, J. J.: Spectra that behave like power-laws are not necessarily
power-laws, Adv. Space Res., 57, 1127–1132,
https://doi.org/10.1016/j.asr.2015.12.020, 2016. a, b, c
Podesta, J. J. and Borovsky, J. E.: Relationship between the durations of
jumps in solar wind time series and the frequency of the spectral break,
J. Geophys. Res.-Space, 121, 1817–1838,
https://doi.org/10.1002/2015JA021987, 2016. a
Politano, H. and Pouquet, A.: Model of intermittency in
magnetohydrodynamic turbulence, Phys. Rev. E, 52, 636–641,
https://doi.org/10.1103/PhysRevE.52.636, 1995. a
Riazantseva, M. O., Zastenker, G. N., Richardson, J. D., and Eiges,
P. E.: Sharp boundaries of small- and middle-scale solar wind structures,
J. Geophys. Res.-Space, 110, A12110,
https://doi.org/10.1029/2005JA011307, 2005. a
Roberts, D. A. and Goldstein, M. L.: Spectral signatures of jumps and
turbulence in interplanetary speed and magnetic field data, J. Geophys. Res., 92,
10 105–10 110, https://doi.org/10.1029/JA092iA09p10105, 1987. a, b
Salem, C., Mangeney, A., Bale, S. D., Veltri, P., and Bruno, R.:
Anomalous scaling and the role of intermittency in solar wind MHD
turbulence: new insights, in: Turbulence and Nonlinear Processes in
Astrophysical Plasmas, edited by: Shaikh, D. and Zank, G. P., Vol. 932,
American Institute of Physics Conference Series, American Institute of Physics, 75–82,
https://doi.org/10.1063/1.2778948, 2007. a, b, c
Salem, C., Mangeney, A., Bale, S. D., and Veltri, P.: Solar Wind
Magnetohydrodynamics Turbulence: Anomalous Scaling and Role of
Intermittency, Astrophys. J., 702, 537–553, https://doi.org/10.1088/0004-637X/702/1/537, 2009. a, b, c, d
Sari, J. W. and Ness, N. F.: Power Spectra of the Interplanetary Magnetic
Field, Sol. Phys., 8, 155–165, https://doi.org/10.1007/BF00150667, 1969. a, b, c, d
Servidio, S., Valentini, F., Califano, F., and Veltri, P.: Local
Kinetic Effects in Two-Dimensional Plasma Turbulence, Phys. Rev.
Lett., 108, 045001, https://doi.org/10.1103/PhysRevLett.108.045001, 2012. a, b
She, Z.-S. and Leveque, E.: Universal scaling laws in fully developed
turbulence, Phys. Rev. Lett., 72, 336–339,
https://doi.org/10.1103/PhysRevLett.72.336, 1994. a
Sioulas, N., Huang, Z., Velli, M., Chhiber, R., Cuesta, M. E., Shi,
C., Matthaeus, W. H., Bandyopadhyay, R., Vlahos, L., Bowen, T. A.,
Qudsi, R. A., Bale, S. D., Owen, C. J., Louarn, P., Fedorov, A.,
Maksimović, M., Stevens, M. L., Case, A., Kasper, J., Larson,
D., Pulupa, M., and Livi, R.: Magnetic Field Intermittency in the Solar
Wind: Parker Solar Probe and SolO Observations Ranging from the Alfvén
Region up to 1 AU, Astrophys. J., 934, 143–159, https://doi.org/10.3847/1538-4357/ac7aa2, 2022. a
Siscoe, G. L., Davis, L., J., Coleman, P. J., J., Smith, E. J., and
Jones, D. E.: Power spectra and discontinuities of the interplanetary
magnetic field: Mariner 4, J. Geophys. Res., 73, 61–82, https://doi.org/10.1029/JA073i001p00061,
1968. a, b
Sonnerup, B. U. O. and Cahill Jr., L. J.: Magnetopause Structure and
Attitude from Explorer 12 Observations, J. Geophys. Res., 72, 171–183,
https://doi.org/10.1029/JZ072i001p00171, 1967. a
Sorriso-Valvo, L., Carbone, F., Leonardis, E., Chen, C. H. K.,
Šafránková, J., and Němeček, Z.: Multifractal
analysis of high resolution solar wind proton density measurements, Adv. Space Res., 59, 1642–1651, https://doi.org/10.1016/j.asr.2016.12.024, 2017. a, b
Telloni, D., Carbone, F., Bruno, R., Sorriso-Valvo, L., Zank, G. P., Adhikari,
L., and Hunana, P.: No Evidence for Critical Balance in Field-aligned
Alfvénic Solar Wind Turbulence, Astrophys. J., 887, 160–166,
https://doi.org/10.3847/1538-4357/ab517b, 2019. a, b
Tsurutani, B. T. and Ho, C. M.: A review of discontinuities and Alfvén
waves in interplanetary space: Ulysses results, Rev. Geophys., 37,
517–524, https://doi.org/10.1029/1999RG900010, 1999. a
Tu, C. Y. and Marsch, E.: A case study of very low cross-helicity
fluctuations in the solar wind., Ann. Geophys., 9, 319–332, 1991. a
Tu, C.-Y. and Marsch, E.: MHD structures, waves and turbulence in the
solar wind: Observations and theories, Space Sci. Rev., 73, 1–210,
https://doi.org/10.1007/BF00748891, 1995. a
Veltri, P.: MHD turbulence in the solar wind: self-similarity, intermittency
and coherent structures, Plasma Phys. Controll. Fusion, 41,
A787–A795, https://doi.org/10.1088/0741-3335/41/3A/071, 1999. a
Veltri, P. and Mangeney, A.: Scaling laws and intermittent structures in
solar wind MHD turbulence, in: Solar Wind Nine, edited by: Habbal, S. R.,
Esser, R., Hollweg, J. V., and Isenberg, P. A., Vol. 471, American Institute of Physics Conference Series, American Institute of Physics, 543–546,
https://doi.org/10.1063/1.58809, 1999. a, b, c
Wan, M., Matthaeus, W. H., Karimabadi, H., Roytershteyn, V., Shay,
M., Wu, P., Daughton, W., Loring, B., and Chapman, S. C.:
Intermittent Dissipation at Kinetic Scales in Collisionless Plasma
Turbulence, Phys. Rev. Lett., 109, 195001,
https://doi.org/10.1103/PhysRevLett.109.195001, 2012. a
Wang, X., Tu, C., He, J., Marsch, E., and Wang, L.: The Influence of
Intermittency on the Spectral Anisotropy of Solar Wind Turbulence, Astrophys. J. Lett.,
783, L9–L15, https://doi.org/10.1088/2041-8205/783/1/L9, 2014. a, b
Wang, X., Tu, C., He, J., Marsch, E., Wang, L., and Salem, C.: The Spectral
Features of Low-amplitude Magnetic Fluctuations in the Solar Wind and Their
Comparison with Moderate-amplitude Fluctuations, Astrophys. J. Lett., 810, L21–L27,
https://doi.org/10.1088/2041-8205/810/2/L21, 2015. a, b
Wang, X., Tu, C., and He, J.: Fluctuation Amplitudes of Magnetic-field
Directional Turnings and Magnetic-velocity Alignment Structures in the Solar
Wind, Astrophys. J., 903, 72–82, https://doi.org/10.3847/1538-4357/abb883, 2020. a, b, c
Wicks, R. T., Horbury, T. S., Chen, C. H. K., and Schekochihin, A. A.:
Anisotropy of Imbalanced Alfvénic Turbulence in Fast Solar Wind,
Phys. Rev. Lett., 106, 045001, https://doi.org/10.1103/PhysRevLett.106.045001,
2011. a, b
Wicks, R. T., Mallet, A., Horbury, T. S., Chen, C. H. K., Schekochihin, A. A.,
and Mitchell, J. J.: Alignment and Scaling of Large-Scale Fluctuations in
the Solar Wind, Phys. Rev. Lett., 110, 025003-1,
https://doi.org/10.1103/PhysRevLett.110.025003, 2013a. a
Wu, H., Tu, C., Wang, X., He, J., Yang, L., and Wang, L.:
Isotropic Scaling Features Measured Locally in the Solar Wind Turbulence
with Stationary Background Field, Astrophys. J., 892, 138–147,
https://doi.org/10.3847/1538-4357/ab7b72, 2020.
a
Wu, H., Tu, C., Wang, X., and Yang, L.: Large Amplitude Switchback
Turbulence: Possible Magnetic Velocity Alignment Structures, Astrophys. J., 911, 73–79,
https://doi.org/10.3847/1538-4357/abec6c, 2021. a
Yang, L., He, J., Tu, C., Li, S., Zhang, L., Wang, X., Marsch,
E., and Wang, L.: Influence of Intermittency on the Quasi-perpendicular
Scaling in Three-dimensional Magnetohydrodynamic Turbulence, Astrophys. J., 846, 49–58,
https://doi.org/10.3847/1538-4357/aa7e7c, 2017. a
Zhang, L., He, J., Tu, C., Yang, L., Wang, X., Marsch, E., and
Wang, L.: Occurrence Rates and Heating Effects of Tangential and
Rotational Discontinuities as Obtained from Three-dimensional Simulation of
Magnetohydrodynamic Turbulence, Astrophys. J. Lett., 804, L43–L49,
https://doi.org/10.1088/2041-8205/804/2/L43, 2015. a
Zhou, Z., Xu, X., Zuo, P., Wang, Y., Xu, Q., Ye, Y., Wang, J.,
Wang, M., Chang, Q., Wang, X., and Luo, L.: Evidence for Plasma
Heating at Thin Current Sheets in the Solar Wind, Astrophys. J. Lett., 924, L22–L27,
https://doi.org/10.3847/2041-8213/ac4701, 2022. a
Short summary
We show, for the first time, an analytical relationship between the intermittency level and the magnetic spectral index in the slow-solar-wind turbulence. Our results supply an observational basis for numerical and theoretical studies of the intermittent turbulence. These results will also help to obtain more information on the contributions of the intermittent structures to the power spectra as well as on the physical nature of the energy cascade taking place in the solar wind.
We show, for the first time, an analytical relationship between the intermittency level and the...