Araki, T.: A physical model of the geomagnetic sudden commencement, in: Solar
Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Vol. 81, Geophysical Monograph, The American Geophysical Union,
Washington, DC, 183–200, ISBN: 0875900402, 1994.
a,
b,
c,
d,
e,
f,
g
Archer, M. O., , Hartinger, M. D., Plaschke, F., and Angelopoulos, V.: Direct
observations of a surface eigenmode of the dayside magnetopause, Nat.
Commun., 10, 615,
https://doi.org/10.1038/s41467-018-08134-5, 2019.
a
Baker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X.,
Elkington, S. R., Monk, S., Reukauf, R., Steg, S., Westfall, J., Belting, C.,
Bolton, B., Braun, D., Cervelli, B., Hubbell, K., Kien, M., Knappmiller, S.,
Wade, S., Lamprecht, B., Stevens, K., Wallace, J., Yehle, A., Spence, H. E.,
and Friedel, R.: The Relativistic Electron-Proton Telescope (REPT)
Instrument on Board the Radiation Belt Storm Probes (RBSP)
Spacecraft: Characterization of Earth's Radiation Belt High-Energy
Particle Populations, Space Sci. Rev., 179, 337–381,
https://doi.org/10.1007/s11214-012-9950-9, 2013.
a
Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain,
W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., George,
J. S., Henderson, M. G., Lalic, M., Lin, A. Y., Looper, M. D., Mabry, D. J.,
Mazur, J. E., McCarthy, B., Nguyen, C. Q., O'Brien, T. P., Perez, M. A.,
Redding, M. T., Roeder, J. L., Salvaggio, D. J., Sorensen, G. A., Spence,
H. E., Yi, S., and Zakrzewski, M. P.: The Magnetic Electron Ion
Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm
Probes (RBSP) Spacecraft, Space Sci. Rev., 179, 383–412,
https://doi.org/10.1007/s11214-013-9991-8, 2013.
a
Blum, L. W., Koval, A., Richardson, I. G., Wilson, L. B., Malaspina, D.,
Greeley, A., and Jaynes, A. N.: Prompt Response of the Dayside Magnetosphere
to Discrete Structures Within the Sheath Region of a Coronal Mass Ejection,
Geophys. Res. Lett., 48, e2021GL092700,
https://doi.org/10.1029/2021GL092700, 2021.
a
Børve, S., Sato, H., Pécseli, H. L., and Trulsen, J. K.: Minute-scale
period oscillations of the magnetosphere, Ann. Geophys., 29, 663–671,
https://doi.org/10.5194/angeo-29-663-2011, 2011.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m
Børve, S., Sato, H., Pécseli, H. L., and Trulsen, J. K.: Low frequency
oscillations of the magnetosphere, in: 2014 XXXIth URSI General Assembly and
Scientific Symposium (URSI GASS), Beijing, Peoples R
China, 16–23 August 2014, IEEE, 1–3,
https://doi.org/10.1109/URSIGASS.2014.6929936, 2014.
a,
b
Cairns, I. H. and Grabbe, C. L.: Towards an MHD theory for the standoff
distance of Earth's bow shock, Geophys. Res. Lett., 21, 2781–2784,
https://doi.org/10.1029/94GL02551, 1994.
a,
b
Califano, F., Faganello, M., Pegoraro, F., and Valentini, F.: Solar wind
interaction with the Earth's magnetosphere: the role of reconnection in the
presence of a large scale sheared flow, Nonlin. Process. Geophys., 16,
1–10,
https://doi.org/10.5194/npg-16-1-2009, 2009.
a
Chandrasekhar, S.: Plasma Physics, The University of Chicago Press, Chicago,
notes compiled by Trehan, S. K., after a course given by Chandrasekhar, S., ISBN-13: 978-0226100845,
1960.
a,
b
Chapman, S. and Bartels, J.: Geomagnetism, Vol. 2, Oxford University Press,
Oxford, 1940.
a,
b,
c
Chen, F. F.: Introduction to Plasma Physics and Controlled Fusion, Springer,
Heidelberg, 3rd Edn., ISBN-10: 9783319223087, 2016.
a,
b,
c
Davidson, P. A.: An Introduction to Magnetohydrodynamics, 2nd Edn., Cambridge, UK, ISBN: 978-1-107-16016-3, 2001.
a,
b
Desai, R. T., Freeman, M. P., Eastwood, J. P., Eggington, J. W. B., Archer,
M. O., Shprits, Y. Y., Meredith, N. P., Staples, F. A., Rae, I. J., Hietala,
H., Mejnertsen, L., Chittenden, J. P., and Horne, R. B.: Interplanetary
Shock-Induced Magnetopause Motion: Comparison Between Theory and Global
Magnetohydrodynamic Simulations, Geophys. Res. Lett., 48, e2021GL092554,
https://doi.org/10.1029/2021GL092554, 2021.
a
Farrugia, C. J. and Gratton, F. T.: Aspects of magnetopause/magnetosphere
response to interplanetary discontinuities, and features of magnetopause
Kelvin-Helmholtz waves, J. Atmos. Sol.-Terr. Phys., 73,
40–51,
https://doi.org/10.1016/j.jastp.2009.10.008, 2011.
a,
b
Ferraro, V. C. A.: On the theory of the first phase of a geomagnetic storm: A
new illustrative calculation based on an idealised (plane not cylindrical)
model field distribution, J. Geophys. Res., 57, 15–49,
https://doi.org/10.1029/JZ057i001p00015, 1952.
a,
b
Foster, J. C., Wygant, J. R., Hudson, M. K., Boyd, A. J., Baker, D. N.,
Erickson, P. J., and Spence, H. E.: Shock-induced prompt relativistic
electron acceleration in the inner magnetosphere, J. Geophys. Res.-Space, 120, 1661–1674,
https://doi.org/10.1002/2014JA020642, 2015.
a
Freeman, M. P., Freeman, N. C., and Farrugia, C. J.: A linear perturbation
analysis of magnetopause motion in the Newton-Busemann limit, Ann.
Geophys., 13, 907–918,
https://doi.org/10.1007/s00585-995-0907-0, 1995.
a,
b
Garcia, O. E., Leer, E., Pécseli, H. L., and Trulsen, J. K.: Magnetic
field-aligned plasma currents in gravitational fields, Ann. Geophys., 33,
257–266,
https://doi.org/10.5194/angeo-33-257-2015, 2015.
a,
b
Hartinger, M. D., Plaschke, F., Archer, M. O., Welling, D. T., Moldwin, M. B.,
and Ridley, A.: The global structure and time evolution of dayside
magnetopause surface eigenmodes, Geophys. Res. Lett., 42, 2594–2602,
https://doi.org/10.1002/2015GL063623, 2015.
a
Kaiser, G.: A Friendly Guide to Wavelets, Birhäuser, Boston, ISBN: 0817637117, 1994. a
Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B. T., Daglis, I. A.,
Brekke, A., and Masuda, S.: Two-step development of geomagnetic storms, J.
Geophys. Res.-Space, 103, 6917–6921,
https://doi.org/10.1029/97JA03337, 1998.
a
Kepko, L. and Spence, H. E.: Observations of discrete, global magnetospheric
oscillations directly driven by solar wind density variations, J. Geophys.
Res., 108, 1257,
https://doi.org/10.1029/2002JA009676, 2003.
a
Kikuchi, T., Chum, J., Tomizawa, I., Hashimoto, K. K., Hosokawa, K., Ebihara,
Y., Hozumi, K., and Supnithi, P.: Penetration of the electric fields of the
geomagnetic sudden commencement over the globe as observed with the HF
Doppler sounders and magnetometers, Earth Planet Space, 73, 10,
https://doi.org/10.1186/s40623-020-01350-8, 2021.
a
Kivelson, M. G., Etcheto, J., and Trotignon, J. G.: Global compressional
oscillations of the terrestrial magnetosphere – the evidence and a model, J.
Geophys. Res., 89, 9851–9856,
https://doi.org/10.1029/JA089iA11p09851, 1984.
a
Korotova, G. I. and Sibeck, D. G.: A case study of transit event motion in the
magnetosphere and in the ionosphere, J. Geophys. Res., 100, 35–46,
https://doi.org/10.1029/94JA02296, 1995.
a
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin,
J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer, F. M., Whang,
Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V., Scheifele, J., and
Worley, E. M.: The WIND magnetic field investigation, Space Sci. Rev.,
71, 207–229,
https://doi.org/10.1007/BF00751330, 1995.
a
Lin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D., Ergun, R.,
Larson, D., McFadden, J., McCarthy, M., Parks, G. K., Rème, H., Bosqued,
J. M., Coutelier, J., Cotin, F., D'Uston, C., Wenzel, K. P., Sanderson,
T. R., Henrion, J., Ronnet, J. C., and Paschmann, G.: A three-dimensional
plasma and energetic particle investigation for the Wind spacecraft, Space
Sci. Rev., 71, 125–153,
https://doi.org/10.1007/BF00751328, 1995.
a
Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C.,
Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E.-A., Amalraj,
V., Wallis, D. D., Angelopoulos, V., Glassmeier, K.-H., Russell, C. T.,
Auster, H.-U., and Singer, H. J.: The Upgraded CARISMA Magnetometer Array
in the THEMIS era, Space Sci. Rev., 141, 413–451,
https://doi.org/10.1007/s11214-008-9457-6, 2008.
a
Paschmann, G., Baumjohann, W., Sckopke, N., Phan, T. D., and Lühr, H.:
Structure of the dayside magnetopause for low magnetic shear, J. Geophys.
Res.-Space, 98, 13409–13422,
https://doi.org/10.1029/93JA00646, 1993.
a,
b
Pécseli, H. L.: Waves and Oscillations in Plasmas, Taylor & Francis,
London, ISBN: 978-1-4398-7848-4, 2012.
a,
b,
c,
d,
e
Phan, T. D. and Paschmann, G.: Low-latitude dayside magnetopause and boundary
layer for high magnetic shear: 1. Structure and motion, J. Geophys. Res.-Space, 101, 7801–7815,
https://doi.org/10.1029/95JA03752, 1996.
a,
b,
c,
d
Plaschke, F., Glassmeier, K.-H., Sibeck, D. G., Auster, H. U., Constantinescu,
O. D., Angelopoulos, V., and Magnes, W.: Magnetopause surface oscillation
frequencies at different solar wind conditions, Ann. Geophys., 27,
4521–4532,
https://doi.org/10.5194/angeo-27-4521-2009, 2009.
a,
b
Richardson, I. G. and Cane, H. V.: Near-Earth Interplanetary Coronal Mass
Ejections During Solar Cycle 23 (199–2009): Catalog and Summary of
Properties, Sol. Phys., 264, 189–237,
https://doi.org/10.1007/s11207-010-9568-6, 2010.
a
Scott, W. T.: The Physics of Electricity and Magnetism, John Wiley & Sons, New
York, 1959.
a,
b
Sibeck, D. G., Baumjohann, W., Elphic, R. C., Fairfield, D. H., Fennell, J. F.,
Gail, W. B., Lanzerotti, L. J., Lopez, R. E., Lühr, H., Lui, A. T. Y.,
Maclennan, C. G., Mcentire, R. W., Potemra, T. A., Rosenberg, T. J., and K.,
T.: The magnetospheric response to 8-minute period strong-amplitude upstream
pressure variations, J. Geophys. Res., 94, 2505–2519,
https://doi.org/10.1029/JA094iA03p02505, 1989.
a
Song, P., Russell, C. T., Gosling, J. T., Thomsen, M., and Elphic, R. C.:
Observations of the density profile in the magnetosheath near the stagnation
streamline, Geophys. Res. Lett., 17, 2035–2038,
https://doi.org/10.1029/GL017i011p02035,
1990.
a
Southwood, D. J. and Kivelson, M. G.: The magnetohydrodynamic response of the
magnetospheric cavity to changes in solar wind pressure, J. Geophys. Res.-Space, 95, 2301–2309,
https://doi.org/10.1029/JA095iA03p02301, 1990.
a
Spreiter, J. R., Summers, A. L., and Alksne, A. Y.: Hydromagnetic flow around
the magnetosphere, Planet. Space Sci., 14, 223–250,
https://doi.org/10.1016/0032-0633(66)90124-3, 1966.
a
Summers, D., Mann, I. R., Baker, D. N., and Schulz, M. G., eds.: Dynamics of
the Earth's Radiation Belts and Inner Magnetosphere, Geophysical
Monograph, 199, John Wiley, Washington, DC, ISBN: 978-1-118-70437-0, 2012. a
Sun, T. R., Wang, C., Zhang, J. J., Pilipenko, V. A., Wang, Y., and Wang,
J. Y.: The chain response of the magnetospheric and ground magnetic field to
interplanetary shocks, J. Geophys. Res.-Space, 120, 157–165,
https://doi.org/10.1002/2014JA020754, 2015.
a
Tanskanen, E. I.: A comprehensive high-throughput analysis of substorms
observed by IMAGE magnetometer network: Years 1993–2003 examined, J.
Geophys. Res.-Space, 114, A05204,
https://doi.org/10.1029/2008JA013682, 2009.
a
Tsuji, H., Ebihara, Y., and Tanaka, T.: Formation of multiple energy dispersion
of H
+, He
+, and O
+ ions in the inner magnetosphere in response to
interplanetary shock, J. Geophys. Res.-Space, 122, 4387–4397,
https://doi.org/10.1002/2016JA023704, 2017.
a
Walker, R. J. and Russell, C. T.: Introduction to Space Physics, chap. 6:
Solar-wind interactions with magnetized planets, Cambridge
University Press, Cambridge, UK, 164–182, ISBN: 0521451043, 1995. a