Articles | Volume 40, issue 6
Ann. Geophys., 40, 619–639, 2022
https://doi.org/10.5194/angeo-40-619-2022
Ann. Geophys., 40, 619–639, 2022
https://doi.org/10.5194/angeo-40-619-2022
Regular paper
02 Nov 2022
Regular paper | 02 Nov 2022

Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere

Paul Prikryl et al.

Related authors

Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021,https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–magnetosphere interactions
Responses of intermediate layers to geomagnetic activity during the 2009 deep solar minimum over the Brazilian low-latitude sector
Ângela M. Santos, Christiano G. M. Brum, Inez S. Batista, José H. A. Sobral, Mangalathayil A. Abdu, and Jonas R. Souza
Ann. Geophys., 40, 259–269, https://doi.org/10.5194/angeo-40-259-2022,https://doi.org/10.5194/angeo-40-259-2022, 2022
Short summary
Whistler waves produced by monochromatic currents in the low nighttime ionosphere
Vera G. Mizonova and Peter A. Bespalov
Ann. Geophys., 39, 479–486, https://doi.org/10.5194/angeo-39-479-2021,https://doi.org/10.5194/angeo-39-479-2021, 2021
Short summary
Ionospheric control of space weather
Osuke Saka
Ann. Geophys., 39, 455–460, https://doi.org/10.5194/angeo-39-455-2021,https://doi.org/10.5194/angeo-39-455-2021, 2021
Short summary
Swarm field-aligned currents during a severe magnetic storm of September 2017
Renata Lukianova
Ann. Geophys., 38, 191–206, https://doi.org/10.5194/angeo-38-191-2020,https://doi.org/10.5194/angeo-38-191-2020, 2020
Short summary

Cited articles

Afraimovich, E. L., Kosogorov, E. A., Leonovich, L. A., Palamartchouk, K. S., Perevalova, N. P., and Pirog, O. M.: Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays, J. Atmos. Sol.-Terr. Phy., 62, 553–565, https://doi.org/10.1016/S1364-6826(00)00011-0, 2000. 
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems, Earth Planet. Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999. 
Belcher, J. W. and Davis Jr., L.: Large-amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534–3563, https://doi.org/10.1029/JA076i016p03534, 1971. 
Bertin, F., Testud, J., and Kersley, L.: Medium-scale gravity waves in the ionospheric F-region and their possible origin in weather disturbances, Planet. Space Sci., 23, 493–507, https://doi.org/10.1016/0032-0633(75)90120-8, 1975. 
Bertin, F., Testud, J., Kersley, L., and Rees, P. R.: The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: an experimental study, J. Atmos. Terr. Phys., 40, 1161–1183, https://doi.org/10.1016/0021-9169(78)90067-3, 1978. 
Download
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.