Articles | Volume 40, issue 6
https://doi.org/10.5194/angeo-40-619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere
Physics Department, University of New Brunswick,
Fredericton, NB, E3B 5A3, Canada
Robert G. Gillies
Department of Physics and Astronomy, University of
Calgary, Calgary, AB, Canada
David R. Themens
Physics Department, University of New Brunswick,
Fredericton, NB, E3B 5A3, Canada
School of Engineering, University of Birmingham,
Birmingham, UK
James M. Weygand
Earth, Planetary, and Space Sciences, University of
California, Los Angeles, CA, USA
Evan G. Thomas
Thayer School of Engineering, Dartmouth College, Hanover,
NH, USA
Shibaji Chakraborty
Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA
Related authors
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Preprint under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Preprint under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-18, https://doi.org/10.5194/gi-2023-18, 2024
Preprint under review for GI
Short summary
Short summary
We present a second-level calibration method for electron density measurements from multi-beam incoherent scatter radars. It is based on the well-known Flat field correction method used in imaging and photography. The methods improve data quality and useability as they account for unaccounted, and unpredictable variations in the radar system. This is valuable for studies where inter-beam calibration is important such as studies of polar cap patches, plasma irregularities and turbulence.
Kristina Collins, John Gibbons, Nathaniel Frissell, Aidan Montare, David Kazdan, Darren Kalmbach, David Swartz, Robert Benedict, Veronica Romanek, Rachel Boedicker, William Liles, William Engelke, David G. McGaw, James Farmer, Gary Mikitin, Joseph Hobart, George Kavanagh, and Shibaji Chakraborty
Earth Syst. Sci. Data, 15, 1403–1418, https://doi.org/10.5194/essd-15-1403-2023, https://doi.org/10.5194/essd-15-1403-2023, 2023
Short summary
Short summary
This paper summarizes radio data collected by citizen scientists, which can be used to analyze the charged part of Earth's upper atmosphere. The data are collected from several independent stations. We show ways to look at the data from one station or multiple stations over different periods of time and how it can be combined with data from other sources as well. The code provided to make these visualizations will still work if some data are missing or when more data are added in the future.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Angeline G. Burrell, Gareth Chisham, Stephen E. Milan, Liam Kilcommons, Yun-Ju Chen, Evan G. Thomas, and Brian Anderson
Ann. Geophys., 38, 481–490, https://doi.org/10.5194/angeo-38-481-2020, https://doi.org/10.5194/angeo-38-481-2020, 2020
Short summary
Short summary
The Earth's polar upper atmosphere changes along with the magnetic field, other parts of the atmosphere, and the Sun. When studying these changes, knowing the polar region that the data come from is vital, as different processes dominate the area where the aurora is and poleward of the aurora (the polar cap). The boundary between these areas is hard to find, so this study used a different boundary and figured out how they are related. Future studies can now find their polar region more easily.
Alexander Koustov, Robert Gillies, and Peter Bankole
Ann. Geophys., 36, 1657–1666, https://doi.org/10.5194/angeo-36-1657-2018, https://doi.org/10.5194/angeo-36-1657-2018, 2018
Short summary
Short summary
Clyde River (CLY) SuperDARN radar velocities reflecting plasma flows in the ionosphere are consistent with measurements by the incoherent scatter radar RISR. While agreement is good in the range of RISR velocity magnitudes of 0–700 m s−1, CLY velocities become progressively smaller at faster flows. In one example of strong disagreements between the instruments, by 200 m s−1, the radars monitored strongly sheared flows. Validation of the CLY radar confirms the reliability of SuperDARN operation.
Emilia Correia, Luca Spogli, Lucilla Alfonsi, Claudio Cesaroni, Adriana M. Gulisano, Evan G. Thomas, Ray F. Hidalgo Ramirez, and Alexandre A. Rodel
Ann. Geophys., 35, 1113–1129, https://doi.org/10.5194/angeo-35-1113-2017, https://doi.org/10.5194/angeo-35-1113-2017, 2017
Short summary
Short summary
Ionospheric disturbances observed in Antarctica during a moderately strong geomagnetic storm caused by the impact of a coronal mass ejection from the Sun are presented here. The ionosphere behavior was analyzed using GNSS and ionosonde observations at middle and high latitudes. The results showed that the impact promptly affected the ionosphere from the Equator to the high latitudes, resulting in strong irregularities, particularly at middle and high latitudes, which can affect GPS users.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–magnetosphere interactions
Ionospheric upwelling and the level of associated noise at solar minimum
Three principal components describe the spatiotemporal development of mesoscale ionospheric equivalent currents around substorm onsets
Parallel electric fields produced by ionospheric injection
A comparison of Jason-2 plasmasphere electron content measurements with ground-based measurements
Responses of intermediate layers to geomagnetic activity during the 2009 deep solar minimum over the Brazilian low-latitude sector
Whistler waves produced by monochromatic currents in the low nighttime ionosphere
Ionospheric control of space weather
Swarm field-aligned currents during a severe magnetic storm of September 2017
Timothy Wemimo David, Chizurumoke Michael Michael, Darren Wright, Adetoro Temitope Talabi, and Abayomi Ekundayo Ajetunmobi
Ann. Geophys., 42, 349–354, https://doi.org/10.5194/angeo-42-349-2024, https://doi.org/10.5194/angeo-42-349-2024, 2024
Short summary
Short summary
The Earth’s upper atmospheres are dominated by matter also known as plasma. These plasmas can flow from the lower region, the ionosphere, to the further-up region, the magnetosphere, which is described as upwelling. We analyse data for ionospheric upwelling over the solar minimum period. A main finding is that the noise or rejected data in the dataset were predominant around the local evening and in winter and minimum around local noon and in summer.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Osuke Saka
Ann. Geophys., 41, 369–373, https://doi.org/10.5194/angeo-41-369-2023, https://doi.org/10.5194/angeo-41-369-2023, 2023
Short summary
Short summary
Transverse electric fields transmitted from the magnetosphere and those generated by the neutral winds yield a local breakdown of the charge neutrality at the boundaries between the thermosphere and mesosphere. The breakdown may create parallel electric fields in the thermosphere to produce spiral auroras and outflows. This explanation supposes an auroral generator located not in a distant space, but rather in our much nearer upper atmosphere.
Andrew J. Mazzella Jr. and Endawoke Yizengaw
Ann. Geophys., 41, 269–280, https://doi.org/10.5194/angeo-41-269-2023, https://doi.org/10.5194/angeo-41-269-2023, 2023
Short summary
Short summary
Global Positioning System (GPS) measurements of plasmasphere electron content (PEC) by Jason-2 are compared to PEC for ground-based GPS receivers in Africa. Jason-2 vertical PEC measurements corroborated the ground-based measurements, and its co-aligned slant PEC values were generally close to the ground-based slant PEC values. This correspondence indicates that the Jason-2 PEC measurements could be used to resolve some ambiguities in the determination of the ground-based PEC values.
Ângela M. Santos, Christiano G. M. Brum, Inez S. Batista, José H. A. Sobral, Mangalathayil A. Abdu, and Jonas R. Souza
Ann. Geophys., 40, 259–269, https://doi.org/10.5194/angeo-40-259-2022, https://doi.org/10.5194/angeo-40-259-2022, 2022
Short summary
Short summary
Using the Digisonde data this paper shows that the small variation in the geomagnetic activity during low solar activity can affect both the parameter of height and the frequency of the intermediate layer (ILs) over the low-latitude Brazilian sector. The most expressive responses of the ILs to geomagnetic activity were observed during the summer when the height of the ILs suffered a significant decrease with the increase of the magnetic activity magnetic in the first hours of the day.
Vera G. Mizonova and Peter A. Bespalov
Ann. Geophys., 39, 479–486, https://doi.org/10.5194/angeo-39-479-2021, https://doi.org/10.5194/angeo-39-479-2021, 2021
Short summary
Short summary
The paper discusses the excitation of monochromatic ELF/VLF electromagnetic waves produced by HF heating facility currents in the nighttime ionosphere. The ground-based magnetic field is predominantly located under the source, and the wave has right-hand polarization typical for a whistler but left-hand polarization at large distances from the source. About half of the source energy propagates upward, and approximately 20 % propagates to the Earth–ionosphere waveguide.
Osuke Saka
Ann. Geophys., 39, 455–460, https://doi.org/10.5194/angeo-39-455-2021, https://doi.org/10.5194/angeo-39-455-2021, 2021
Short summary
Short summary
The ionosphere is a partly ionized medium above the atmosphere. Because of its anisotropic properties, the imposed electric fields from the magnetosphere produce space charge. Polarization electric fields induced in the ionosphere by this process generate ion drifts (Pedersen currents) and plasma evaporation along the field lines, thus achieving a quasi-neutral equilibrium of the ionosphere. The evaporation grows as a large-scale parallel potential structure in the magnetosphere.
Renata Lukianova
Ann. Geophys., 38, 191–206, https://doi.org/10.5194/angeo-38-191-2020, https://doi.org/10.5194/angeo-38-191-2020, 2020
Short summary
Short summary
During the most intense storm of solar cycle 24, the magnetosphere–ionosphere interaction, which is primarily associated with field-aligned currents (FACs), was much stronger than usual. Measurements onboard the low-latitude polar-orbiting Swarm satellites have shown that the intensities of FACs increase dramatically during the storm-time substorms. The extreme values of 1 s (7.5 km width) FACs reach 80 μA m−2. The lowest latitude of the FAC region is limited to 49–50 MLat.
Cited articles
Afraimovich, E. L., Kosogorov, E. A., Leonovich, L. A., Palamartchouk, K. S.,
Perevalova, N. P., and Pirog, O. M.: Determining parameters of large-scale
traveling ionospheric disturbances of auroral origin using GPS-arrays, J.
Atmos. Sol.-Terr. Phy., 62, 553–565, https://doi.org/10.1016/S1364-6826(00)00011-0, 2000.
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field
continuation from the ground to the ionosphere using spherical elementary
currents systems, Earth Planet. Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999.
Belcher, J. W. and Davis Jr., L.: Large-amplitude Alfvén waves in the
interplanetary medium, 2, J. Geophys. Res., 76, 3534–3563, https://doi.org/10.1029/JA076i016p03534, 1971.
Bertin, F., Testud, J., and Kersley, L.: Medium-scale gravity waves in the
ionospheric F-region and their possible origin in weather disturbances,
Planet. Space Sci., 23, 493–507, https://doi.org/10.1016/0032-0633(75)90120-8, 1975.
Bertin, F., Testud, J., Kersley, L., and Rees, P. R.: The meteorological jet
stream as a source of medium scale gravity waves in the thermosphere: an
experimental study, J. Atmos. Terr. Phys., 40, 1161–1183,
https://doi.org/10.1016/0021-9169(78)90067-3, 1978.
British Geological Survey: INTERMAGNET, https://www.intermagnet.org, last access: 25 September 2022.
Bristow, W. A. and Greenwald, R. A.: Multiradar observations of medium-scale
acoustic gravity waves using the Super Dual Auroral Radar Network, J.
Geophys. Res., 101, 24499–24511, https://doi.org/10.1029/96JA01494, 1996.
Bristow, W. A., Greenwald, R. A., and Samson, J. C.: Identification of
high-latitude acoustic gravity wave sources using the Goose Bay HF radar, J.
Geophys. Res., 99, 319–331, https://doi.org/10.1029/93JA01470, 1994.
CEDAR: Madrigal Database, http://cedar.openmadrigal.org/, last access: 25 September 2022.
CHAIN: GNSS data, http://chain.physics.unb.ca/chain/pages/data_download, last access: 25 September 2022.
Cherniak, I. and Zakharenkova, I.: Large-scale traveling ionospheric
disturbances origin and propagation: Case study of the December 2015
geomagnetic storm, Space Weather, 16, 1377–1395, https://doi.org/10.1029/2018SW001869, 2018.
Chimonas, G. and Hines, C. O.: Atmospheric gravity waves launched by auroral
currents, Planet. Space Sci., 18, 565–582, https://doi.org/10.1016/0032-0633(70)90132-7, 1970.
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J.-P., and Walker, A. D. M.: A decade of the super dual
auroral radar network (SuperDARN): scientific achievements, new techniques
and future directions, Surv. Geophys., 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8, 2007.
Clauer, C. R., Stauning, P., Rosenberg, T. J., Friis-Christensen, E.,
Miller, P. M., and Sitar, R. J.: Observations of a solar-wind-driven
modulations of the dayside ionospheric DPY current system, J. Geophys. Res.,
100, 7697–7713, https://doi.org/10.1029/94JA01193, 1995.
Cowley, S. W. H. and Lockwood, M.: Excitation and decay of solar wind
driven flows in the magnetosphere-ionosphere system, Ann. Geophys., 10,
103–115, 1992.
Cowley, S. W. H., van Eyken, A. P., Thomas, E. C., Williams, P. J. S., and Wlllis,
D. M.: Studies of the cusp and auroral zone with incoherent scatter radar:
the scientific and technical case for a polar-cap radar, J. Atmos.
Sol.-Terr. Phy., 52, 645–663, https://doi.org/10.1016/0021-9169(90)90059-V, 1990.
Crooker, N. U.: Reverse convection, J. Geophys. Res., 97, 19363–19372,
https://doi.org/10.1029/92JA01532, 1992.
Crowley, G. and McCrea, I. W.: A synoptic study of TIDs observed in the UK
during the first WAGS campaign, October 10–18, 1985, Radio Sci., 23,
905–917, https://doi.org/10.1029/RS023i006p00905, 1988.
Crowley, G. and Williams, P. J. S.: Observations of the source and
propagation of atmospheric gravity waves, Nature, 328, 231–233, https://doi.org/10.1038/328231a0, 1987.
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys.
Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47,
1961.
Dungey, J. W.: Origin of the concept of reconnection and its application to
the magnetopause: A historical view, Physics of the Magnetopause, Geophys.
Monogr. Ser., Vol. 90, edited by: Song, P., Sonnerup, B. U. O., and Thomsen, M. F., 17–19, AGU, Washington, D.C., 1995.
FRDR: SuperDARN, https://www.frdr-dfdr.ca/repo/collection/superdarn, last access: 25 September 2022.
Francis, S. H.: Global propagation of atmospheric gravity waves: A review,
J. Atmos. Terr. Phys., 37, 1011–1054,
https://doi.org/10.1016/0021-9169(75)90012-4, 1975.
Friis-Christensen, E. and Wilhjelm, J.: Polar cap currents for different
directions of the interplanetary magnetic field in the Y-Z plane, J.
Geophys. Res., 80, 1248–1260, https://doi.org/10.1029/JA080i010p01248, 1975.
Frissell, N. A., Baker, J. B. H., Ruohoniemi, J. M., Gerrard, A. J., Miller,
E. S., Marini, J. P., West, M. L., and Bristow, W. A.: Climatology of
medium-scale traveling ionospheric disturbances observed by the midlatitude
Blackstone SuperDARN radar, J. Geophys. Res.-Space, 119, 7679–7697, https://doi.org/10.1002/2014JA019870, 2014.
Frissell, N. A., Baker, J. B. H., Ruohoniemi, J. M., Greenwald, R. A., Gerrard,
A. J., Miller, E. S., and West, M. L.: Sources and characteristics of medium-scale
traveling ionospheric disturbances observed by high-frequency radars in the
North American sector, J. Geophys. Res.-Space, 121, 3722–3739,
https://doi.org/10.1002/2015JA022168, 2016.
Gillies, R. G., van Eyken, A., Spanswick, E., Nicolls, M., Kelly, J., Greffen, M., Knudsen,
D., Connors, M., Schutzer, M., Valentic, T., and Malone, M.: First observations from
the RISR-C incoherent scatter radar, Radio Sci., 51, 1645–1659,
https://doi.org/10.1002/2016RS006062, 2016.
Gillies, R. G., Perry, G. W., Koustov, A. V., Varney, R. H., Reimer, A. S., Spanswick, E., St.-Maurice, J.-P., and Donovan, E.: Large-scale comparison of polar cap ionospheric
velocities measured by RISR-C, RISR-N, and SuperDARN, Radio Sci., 53,
624–639, https://doi.org/10.1029/2017RS006435, 2018.
Gjerloev, J. W.: The SuperMAG data processing technique, J. Geophys. Res.,
117, A09213, https://doi.org/10.1029/2012JA017683, 2012 (data available at: https://supermag.jhuapl.edu/mag/, last access: 25 September 2022).
Goertz, C. K., Nielsen, E., Korth, A., Glassmeier, K.-H., Haldoupis, C.,
Hoeg, P., and Hayward, D.: Observations of a possible signature of flux
transfer events, J. Geophys. Res., 90, 4069–4078, https://doi.org/10.1029/JA090iA05p04069, 1985.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G.,
Tsurutani, B. T., and Vasyliunas, V. M.: What is a Geomagnetic Storm?, J.
Geophys. Res., 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994.
Gosling, J. T., Thomsen, M. F., Bame, S. J., Elphic, R. C., and Russell, C.
T.: Plasma flow reversals at the dayside magnetopause and the origin of the
asymmetric polar cap convection, J. Geophys. Res., 95, 8073, https://doi.org/10.1029/JA095iA06p08073, 1990.
Guarnieri, F. L.: The Nature of Auroras During High-Intensity Long-Duration
Continuous AE Activity (HILDCAA) Events: 1998 to 2001, in: Recurrent Magnetic
Storms: Corotating Solar Wind Streams, edited by: Tsurutani, B. T.,
McPherron, R. L., Gonzalez, W. D., Lu, G., Sobral, J. H. A., and Gopalswamy, N., Amer.
Geophys. U. Monograph, Wash. D.C., 167, 235–243, https://doi.org/10.1029/167GM19,
2006.
Hayashi, H., Nishitani, N., Ogawa, T., Otsuka, Y., Tsugawa, T., Hosokawa,
K., and Saito, A.: Large-scale traveling ionospheric disturbance observed by
superDARN Hokkaido HF radar and GPS networks on 15 December 2006, J.
Geophys. Res., 115, A06309, https://doi.org/10.1029/2009JA014297, 2010.
Hunsucker, R. D.: Atmospheric gravity waves generated in the highlatitude
ionosphere: a review, Rev. Geophys. Space Ge., 20, 293–315, https://doi.org/10.1029/RG020i002p00293, 1982.
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res.-Space, 110, A02104, https://doi.org/10.1029/2004JA010649, 2005.
Kokubun, S., Yamamoto, T., Acuna, M. H., Hayashi, K., Shiokawa, K., and
Kawano, H.: The GEOTAIL magnetic field experiment, J. Geomagn. Geoelectr.,
46, 7–21, 1994.
Lu, G., Li, W. H., Raeder, J., Deng, Y., Rich, F., Ober, D., Zhang, Y. L.,
Paxton L., Ruohoniemi, J. M., Hairston, M., and Newell, P.: Reversed
two-cell convection in the Northern and Southern hemispheres during
northward interplanetary magnetic field, J. Geophys. Res., 116, A12237,
https://doi.org/10.1029/2011JA017043, 2011.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation
of wave phenomena in a dissipative multiconstituent medium 1. Transfer
function of the Earth's thermosphere, J. Geophys. Res., 89, 10929–10959,
https://doi.org/10.1029/JA089iA12p10929, 1984a.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation
of wave phenomena in a dissipative multiconstituent medium 2. Impulsive
perturbations in the Earth's thermosphere, J. Geophys. Res., 89,
10961–10986, https://doi.org/10.1029/JA089iA12p10961, 1984b.
Mayr, H. G., Harris, I., Herrero, F. A., Spencer, N. W., Varosi, F., and
Pesnell, W. D.: Thermospheric gravity waves: Observations and interpretation
using the transfer function model, Space Sci. Rev., 54, 297–375, https://doi.org/10.1007/BF00177800, 1990.
Mayr, H. G., Talaat, E. R., and Wolven, B. C.: Global propagation of gravity
waves generated with the whole atmosphere transfer function model, J. Atmos.
Sol.-Terr. Phy., 104, 7–17, https://doi.org/10.1016/j.jastp.2013.08.001, 2013.
McWilliams, K. A., Yeoman, T. K., and Provan, G.: A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar, Ann. Geophys., 18, 445–453, https://doi.org/10.1007/s00585-000-0445-8, 2000.
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.-T.,
Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., Snekvik, K., Korth, H., and
Anderson, B. J.: Overview of Solar
Wind–Magnetosphere–Ionosphere–Atmosphere Coupling and the Generation of
Magnetospheric Currents, Space Sci. Rev., 206, 547–573, https://doi.org/10.1007/s11214-017-0333-0, 2017.
NASA: OMNIWeb, http://omniweb.gsfc.nasa.gov, last access: 25 September 2022.
Nishioka, M., Tsugawa, T., Kubota, M., and Ishii, M.: Concentric waves and
short-period oscillations observed in the ionosphere after the 2013 Moore
EF5 tornado, Geophys. Res. Lett., 40, 5581–5586, https://doi.org/10.1002/2013GL057963, 2013.
Nishitani, N., Ruohoniemi, J.M., Lester, M., Baker, J. B. H., Koustov, A. V., Shepherd, S. G., Chisham, G., Hori, T., Thomas, E. G., Makarevich, R. A., Marchaudon, A., Ponomarenko, P., Wild, J. A., Milan, S. E., Bristow, W. A., Devlin, Miller, J. E., Greenwald, R. A., Ogawa, T., and Kikuchi, T.: Review of the
accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN)
HF radars, Prog. Earth Planet. Sc., 6, 1–52, https://doi.org/10.1186/s40645-019-0270-5, 2019.
Oksavik, K., Ruohoniemi, J. M., Greenwald, R. A., Baker, J. B. H., Moen, J.,
Carlson, H. C., Yeoman, T. K., and Lester, M.: Observations of isolated polar
cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super
Dual Auroral Radar Network (SuperDARN) Finland radars, J. Geophys. Res.,
111, A05310, https://doi.org/10.1029/2005JA011400, 2006.
Oliver, W. L., Otsuka, Y., Sato, M., Takami, T., and Fukao, S.: A
climatology of F region gravity waves propagation over the middle and upper
atmosphere radar, J. Geophys. Res., 102, 14449–14512, https://doi.org/10.1029/97JA00491, 1997.
Pinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T.,
Greenwald, R. A., and Greenspan, M. E.: Observations of an enhanced
convection channel in the cusp ionosphere, J. Geophys. Res., 98, 3767–3776,
https://doi.org/10.1029/92JA01382, 1993.
Pinnock, M., Rodger, A. S., Dudeney, J. R., Rich, F., and Baker, K. B.: High spatial and temporal resolution observations of the ionospheric cusp, Ann. Geophys., 13, 919–925, https://doi.org/10.1007/s00585-995-0919-9, 1995.
Prikryl, P., Greenwald, R. A., Sofko, G. J., Villain, J. P., Ziesolleck,
C. W. S., and Friis-Christensen, E.: Solar-wind driven pulsed magnetic
reconnection at the dayside magnetopause, Pc5 compressional oscillations,
and field line resonances, J. Geophys. Res., 103, 17307–17322, https://doi.org/10.1029/97JA03595, 1998.
Prikryl, P., MacDougall, J. W., Grant, I. F., Steele, D. P., Sofko, G. J., and Greenwald, R. A.: Observations of polar patches generated by solar wind Alfvén wave coupling to the dayside magnetosphere, Ann. Geophys., 17, 463–489, https://doi.org/10.1007/s00585-999-0463-0, 1999.
Prikryl, P., Provan, G., McWilliams, K. A., and Yeoman, T. K.: Ionospheric cusp flows pulsed by solar wind Alfvén waves, Ann. Geophys., 20, 161–174, https://doi.org/10.5194/angeo-20-161-2002, 2002.
Prikryl, P., Muldrew, D. B., Sofko, G. J., and Ruohoniemi, J. M.: Solar wind Alfvén waves: a source of pulsed ionospheric convection and atmospheric gravity waves, Ann. Geophys., 23, 401–417, https://doi.org/10.5194/angeo-23-401-2005, 2005.
Prikryl, P., Jayachandran, P. T., Mushini, S. C., and Chadwick, R.: Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions, Ann. Geophys., 29, 377–392, https://doi.org/10.5194/angeo-29-377-2011, 2011.
Prikryl, P., Ghoddousi-Fard, R., Weygand, J. M., Viljanen, A., Connors, M.,
Danskin, D. W., Jayachandran, P. T., Jacobsen, K. S., Andalsvik, Y. L., Thomas,
E. G., Ruohoniemi, J. M., Durgonics, T., Oksavik, K., Zhang, Y., Spanswick,
E., Aquino, and Sreeja, V. M.: GPS phase scintillation at high
latitudes during the geomagnetic storm of 17–18 March 2015, J. Geophys.
Res.-Space, 121, 10448–10465, https://doi.org/10.1002/2016JA023171, 2016.
Prikryl, P. Bruntz, R., Tsukijihara, T., Iwao, K., Muldrew, D. B.,
Rušin, V., Rybanský, M., Turna, M., and Šťastný, P.:
Tropospheric weather influenced by solar wind through atmospheric vertical
coupling downward control, J. Atmos. Sol.-Terr. Phy., 171, 94–110,
https://doi.org/10.1016/j.jastp.2017.07.023, 2018.
Prikryl, P., Nikitina, L., and Rušin, V.: Rapid Intensification of
Tropical Cyclones in the Context of the Solar
Wind-Magnetosphere-Ionosphere-Atmosphere Coupling, J. Atmos. Sol.-Terr.
Phy., 183, 36–60, https://doi.org/10.1016/j.jastp.2018.12.009, 2019.
Prikryl, P., Weygand, J. M., Ghoddousi-Fard, R., Jayachandran, P. T.,
Themens, D. R., McCaffrey, A. M., Kunduri, B. S. R., and Nikitina, L.: Temporal
and spatial variations of GPS TEC and phase during auroral substorms and
breakups, Polar Sci., 28, 100602, https://doi.org/10.1016/j.polar.2020.100602, 2021a.
Prikryl, P., Rušin, V., Prikryl, E. A., Šťastný, P., Turňa, M., and Zeleňáková, M.: Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system, Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, 2021b.
Provan, G., Yeoman, T. K., and Milan, S. E.: CUTLASS Finland radar observations of the ionospheric signatures of flux transfer events and the resulting plasma flows, Ann. Geophys., 16, 1411–1422, https://doi.org/10.1007/s00585-998-1411-0, 1998.
Provan, G., Lester, M., Grocott, A., and Cowley, S. W. H.: Pulsed flows observed during an interval of prolonged northward IMF, Ann. Geophys., 23, 1207–1225, https://doi.org/10.5194/angeo-23-1207-2005, 2005.
Richmond, A. D.: Gravity wave generation, propagation, and dissipation in the
thermosphere, J. Geophys. Res., 83, 4131–4145, https://doi.org/10.1029/JA083iA09p04131, 1978.
Rodger, A. S. and Pinnock, M.: The ionospheric response to flux transfer events: the first few minutes, Ann. Geophys., 15, 685–691, https://doi.org/10.1007/s00585-997-0685-y, 1997.
Rodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., and Greenwald, R.
A.: A new mechanism for polar patch formation, J. Geophys. Res., 99,
6425–6436, https://doi.org/10.1029/93JA01501, 1994.
Russell, C. T. and Elphic, R. C.: Initial ISEE magnetometer results:
magnetopause observations, Space Sci. Rev., 22, 681–715, https://doi.org/10.1007/BF00212619, 1978.
Russell, C. T. and Elphic, R. C.: ISEE observations of flux transfer events
at the dayside magnetopause, Geophys. Res. Lett., 6, 33–36, https://doi.org/10.1029/GL006i001p00033, 1979.
Samson, J. C., Greenwald, R. A., Ruohoniemi, J. M., and Baker, K. B.:
High-frequency radar observations of atmospheric gravity waves in the high
latitude ionosphere, Geophys. Res. Lett., 16, 875–878, https://doi.org/10.1029/GL016i008p00875, 1989.
SECS: Spherical Elementary Currents Systems, http://vmo.igpp.ucla.edu/data1/SECS/, last access: 25 September 2022.
Southwood, D. J.: The ionospheric signature of flux transfer events, J.
Geophys. Res., 92, 3207–3213, https://doi.org/10.1029/JA092iA04p03207, 1987.
Smith, C. W., Acuna, M. H., Burlaga, L. F., L'Heureux, J., Ness, N. F., and
Scheifele, J.: The ACE Magnetic Field Experiment, Space Sci. Rev., 86,
613–632, https://doi.org/10.1023/A:1005092216668, 1999.
Smith, E. J. and Wolfe, J. H.: Observations of interaction regions and
corotating shocks between one and five au: Pioneers 10 and 11, Geophys. Res.
Lett., 3, 137–140, https://doi.org/10.1029/GL003i003p00137,
1976.
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the
interplanetary sector structure up to heliographic latitudes of
16∘: Pioneer 11. J. Geophys. Res.-Space, 83, 717–724,
https://doi.org/10.1029/JA083iA02p00717, 1978.
SRI International: ISR Database, http://amisr.com/database/, last access: 25 September 2022.
Stauning, P., Friis-Christensen, E., Rasmussen, O., and Vennerstrom, S.:
Progressing polar convection disturbances: signature of an open
magnetosphere, J. Geophys. Res., 99, 11303–11317, https://doi.org/10.1029/93JA03584, 1994.
Stauning, P., Clauer, C. R., Rosenberg, T. J., Friis-Christensen, E., and
Sitar, R.: Observations of solar-wind-driven progression of interplanetary
magnetic field By-related dayside ionospheric disturbances, J. Geophys.
Res., 100, 7567–7585, https://doi.org/10.1029/94JA01825, 1995.
SuperMAG: Data Download, https://supermag.jhuapl.edu/mag/, last access: 25 September 2022.
Themens, D. R., Jayachandran, P. T., Langley, R. B., MacDougall, J. W., and
Nicolls, M. J.: Determining receiver biases in GPS-derived total electron
content in the auroral oval and polar cap region using ionosonde
measurements, GPS Solut., 17, 357–369, https://doi.org/10.1007/s10291-012-0284-6, 2013.
Themens, D. R., Jayachandran, P. T., and Langley, R. B.: The nature of GPS
differential receiver bias variability: An examination in the polar cap
region, J. Geophys. Res.-Space, 120, 8155–8175, https://doi.org/10.1002/2015JA021639, 2015.
Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A., and Jayachandran, P. T.: Global propagation of ionospheric disturbances
associated with the 2022 Tonga Volcanic Eruption, Geophys. Res. Lett., 49,
e2022GL098158, https://doi.org/10.1029/2022GL098158, 2022.
Tsurutani, B. T. and Gonzalez, W. D.: The cause of High-Intensity,
Long-Duration Continuous AE Activity (HILDCAAs): Interplanetary Alfvén
wave trains, Planet Space Sci., 35, 405–412, https://doi.org/10.1016/0032-0633(87)90097-3, 1987.
Tsurutani, B. T. and Meng, C.-I.: Interplanetary magnetic-field variations
and substorm activity, J. Geophys. Res., 77, 2964–2970, https://doi.org/10.1029/JA077i016p02964, 1972.
Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., and Sugiura,
M.: Interplanetary Alfvén waves and auroral (substorm) activity: IMP-8,
J. Geophys. Res., 95, 2241–2252, https://doi.org/10.1029/JA095iA03p02241, 1990.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K.,
and Okada, M.: Interplanetary origin of geomagnetic activity in the
declining phase of the solar cycle, J. Geophys. Res., 100, 21717–21733,
https://doi.org/10.1029/95JA01476, 1995a.
Tsurutani, B. T., Ho, C. M., Arballo, J. K., Goldstein, B. E., and Andre Balogh,
A.: Large Amplitude IMF Fluctuations in Corotating Interaction Regions:
Ulysses at Midlatitudes, Geophys. Res. Lett., 22, 3397–3400, https://doi.org/10.1029/95GL03179, 1995b.
Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., Lu, G., Gopalswamy, N.,
and Guarnieri, F. L.: Magnetic Storms Caused by Corotating Solar Wind
Streams, in: Recurrent Magnetic Storms: Corotating Solar Wind, AGU monograph
167, 1–17, https://doi.org/10.1029/167GM03, 2006.
University of Alaska Fairbanks: Magnetometer Archive, https://www.gi.alaska.edu/monitors/magnetometer/archive, last access: 25 September 2022.
University of Alberta: CARISMA, https://www.carisma.ca/, last access: 25 September 2022.
University of Calgary: RISR-C data, http://data.phys.ucalgary.ca/, last access: 25 September 2022a.
University of Calgary: Madrigal Database, https://madrigal.phys.ucalgary.ca/, last access: 25 September 2022b.
Valladares, C. E., Basu, S., Buchau, J., and Friis-Christensen, E.:
Experimental evidence for the formation and entry of patches into the polar
cap, Radio Sci., 29, 167–194, https://doi.org/10.1029/93RS01579, 1994.
Valladares, C. E., Decker, D. T., Sheehan, R., and Anderson, D. N.: Modeling
the formation of polar cap patches using large plasma flows, Radio Sci., 31,
573–593, https://doi.org/10.1029/96RS00481, 1996.
Van Eyken, A. P., Risbeth, H., and Saunders, M. A.: Initial observations of
plasma convection at invariant latitudes of 70–77∘, J. Atmos.
Terr. Phys., 46, 635–641, https://doi.org/10.1016/0021-9169(84)90081-3, 1984.
Waldock, J. A. and Jones, T. B.: Source regions of medium scale traveling
ionospheric disturbances observed at mid-latitudes, J. Atmos. Terr. Phys.,
49, 105–114, https://doi.org/10.1016/0021-9169(87)90044-4,
1987.
Walker, A. D. M., Greenwald, R. A., and Baker, K. B.: HF radar observations
of pulsations near the magnetospheric cusp, J. Geophys. Res., 91,
8919–8928, https://doi.org/10.1029/JA091iA08p08919, 1986.
Weygand, J. M.: Equivalent Ionospheric Currents (EICs) derived using the
Spherical Elementary Currents Systems (SECS) technique at 10 sec Resolution
in Geographic Coordinates, UCLA [data set], https://doi.org/10.21978/P8D62B, 2009a.
Weygand, J. M.: Spherical Elementary Current (SEC) Amplitudes derived using
the Spherical Elementary Currents Systems (SECS) technique at 10 sec
Resolution in Geographic Coordinates, UCLA [data set], https://doi.org/10.21978/P8PP8X, 2009b.
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D.,
Engebretson, M. J., Gleisner, H., and Mann, I.: Application and validation of
the spherical elementary currents systems technique for deriving ionospheric
equivalent currents with the North American and Greenland ground
magnetometer arrays, J. Geophys. Res., 116, A03305, https://doi.org/10.1029/2010JA016177, 2011.
Yang, Y.-H., Chao, J.-K., and Lee, L.-C.: On the Walén Relation for Alfvénic Fluctuations in Interplanetary Space, Astrophys. J., 904, 195, https://doi.org/10.3847/1538-4357/abbf55, 2020.
Zhang, S.-R., Erickson, P. J., Coster, A. J., Rideout, W., Vierinen, J.,
Jonah, O. F., and Goncharenko, L. P.: Subauroral and polar traveling
ionospheric disturbances during the 7–9 September 2017 storms, Space
Weather, 17, 1748–1764, https://doi.org/10.1029/2019SW002325, 2019.
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion...