Articles | Volume 40, issue 4
https://doi.org/10.5194/angeo-40-485-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-485-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Classification of spectral fine structures of Saturn kilometric radiation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
Ulrich Taubenschuss
Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
David Píša
Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
Related authors
G. Fischer, S.-Y. Ye, J. B. Groene, A. P. Ingersoll, K. M. Sayanagi, J. D. Menietti, W. S. Kurth, and D. A. Gurnett
Ann. Geophys., 32, 1463–1476, https://doi.org/10.5194/angeo-32-1463-2014, https://doi.org/10.5194/angeo-32-1463-2014, 2014
Short summary
Short summary
In this paper we show that the large thunderstorm called the "Great White Spot", which raged for about 9 months in Saturn's troposphere in 2010/2011, was accompanied by changes in the periodicity and phasing of auroral radio emissions. We suggest that the thunderstorm was a source of intense gravity waves causing a global change in Saturn’s ionospheric winds via energy and momentum deposition. This supports the theory that Saturn’s magnetospheric periodicities are driven by the upper atmosphere.
Samuel Kočiščák, Andreas Kvammen, Ingrid Mann, Nicole Meyer-Vernet, David Píša, Jan Souček, Audun Theodorsen, Jakub Vaverka, and Arnaud Zaslavsky
Ann. Geophys., 42, 191–212, https://doi.org/10.5194/angeo-42-191-2024, https://doi.org/10.5194/angeo-42-191-2024, 2024
Short summary
Short summary
In situ observations are crucial for understanding interplanetary dust, yet not every spacecraft has a dedicated dust detector. Dust encounters happen at great speeds, leading to high energy density at impact, which leads to ionization and charge release, which is detected with electrical antennas. Our work looks at how the transient charge plume interacts with Solar Orbiter spacecraft. Our findings are relevant for the design of future experiments and the understanding of present data.
Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic Babic, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann
Ann. Geophys., 41, 69–86, https://doi.org/10.5194/angeo-41-69-2023, https://doi.org/10.5194/angeo-41-69-2023, 2023
Short summary
Short summary
Collisional fragmentation of asteroids, comets and meteoroids is the main source of dust in the solar system. The dust distribution is however uncharted and the role of dust in the solar system is largely unknown. At present, the interplanetary medium is explored by the Solar Orbiter spacecraft. We present a novel method, based on artificial intelligence, that can be used for detecting dust impacts in Solar Orbiter observations with high accuracy, advancing the study of dust in the solar system.
G. Fischer, S.-Y. Ye, J. B. Groene, A. P. Ingersoll, K. M. Sayanagi, J. D. Menietti, W. S. Kurth, and D. A. Gurnett
Ann. Geophys., 32, 1463–1476, https://doi.org/10.5194/angeo-32-1463-2014, https://doi.org/10.5194/angeo-32-1463-2014, 2014
Short summary
Short summary
In this paper we show that the large thunderstorm called the "Great White Spot", which raged for about 9 months in Saturn's troposphere in 2010/2011, was accompanied by changes in the periodicity and phasing of auroral radio emissions. We suggest that the thunderstorm was a source of intense gravity waves causing a global change in Saturn’s ionospheric winds via energy and momentum deposition. This supports the theory that Saturn’s magnetospheric periodicities are driven by the upper atmosphere.
Cited articles
Badman, S. V., Cowley, S. W. H., Gérard, J.-C., and Grodent, D.: A statistical analysis of the location and width of Saturn's southern auroras, Ann. Geophys., 24, 3533–3545, https://doi.org/10.5194/angeo-24-3533-2006, 2006. a
Calvert, W.: A feedback model for the source of auroral kilometric
radiation, J. Geophys. Res., 87, 8199–8214,
https://doi.org/10.1029/JA087iA10p08199, 1982. a
Cecconi, B., Lamy, L., Zarka, P., Prangé, R., Kurth, W. S., and
Louarn, P.: Goniopolarimetric study of the revolution 29 perikrone using
the Cassini Radio and Plasma Wave Science instrument high-frequency radio
receiver, J. Geophys. Res.-Space, 114, A03215,
https://doi.org/10.1029/2008JA013830, 2009. a
Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston,
C. C., Peria, W., McFadden, J. P., and Strangeway, R.: FAST
observations of electron distributions within AKR source regions,
Geophys. Res. Lett., 25, 2069–2072, https://doi.org/10.1029/98GL00705, 1998. a
Gabor, D.: Theory of communication, Jornal of the Institute of Electrical
Engineering, 93, 429–457, 1946. a
Grabbe, C. L.: Theory of the fine structure of auroral kilometric
radiation, Geophys. Res. Lett., 9, 155–158,
https://doi.org/10.1029/GL009i002p00155, 1982. a, b
Gurnett, D. A.: The Earth as a radio source: Terrestrial kilometric
radiation, J. Geophys. Res., 79, 4227,
https://doi.org/10.1029/JA079i028p04227, 1974. a
Gurnett, D. A. and Anderson, R. R.: The kilometric radio emission spectrum – Relationship to auroral acceleration processes, in: Physics of Auroral Arc Formation, edited by: Akasofu, S.-I. and Kan, J. R., AGU Geophysical Monograph Vol. 25, 341–350, 1981. a
Gurnett, D. A., Anderson, R. R., Scarf, F. L., Fredricks, R. W., and
Smith, E. J.: Initial results from the ISEE-1 and -2 plasma wave investigation, Space Sci. Rev., 23, 103–122,
https://doi.org/10.1007/BF00174114, 1979. a, b, c, d
Gurnett, D. A., Huff, R. L., and Kirchner, D. L.: The Wide-Band Plasma
Wave Investigation, Space Sci. Rev., 79, 195–208,
https://doi.org/10.1023/A:1004966823678, 1997. a
Gurnett, D. A., Kurth, W. S., Menietti, J. D., and Persoon, A. M.: An
unusual rotationally modulated attenuation band in the Jovian hectometric
radio emission spectrum, Geophys. Res. Lett., 25, 1841–1844,
https://doi.org/10.1029/98GL01400, 1998. a
Gurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B.,
Averkamp, T. F., Zarka, P., Lecacheux, A., Manning, R., Roux, A.,
Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A.,
Boström, R., Gustafsson, G., Wahlund, J. E., Åhlen, L.,
Rucker, H. O., Ladreiter, H. P., Macher, W., Woolliscroft, L. J. C.,
Alleyne, H., Kaiser, M. L., Desch, M. D., Farrell, W. M., Harvey,
C. C., Louarn, P., Kellogg, P. J., Goetz, K., and Pedersen, A.: The
Cassini Radio and Plasma Wave Investigation, Space Sci. Rev., 114,
395–463, https://doi.org/10.1007/s11214-004-1434-0, 2004. a, b, c
Kurth, W. S., Hospodarsky, G. B., Gurnett, D. A., Lecacheux, A., Zarka, P., Desch, M. D., Kaiser, M. L., and Farrell, W. M.:
High-Resolution Observations of Low-Frequency Jovian Radio Emissions by Cassini, in: Planetary Radio Emissions V, edited by: Rucker, H. O., Kaiser, M. L., and Leblanc, Y., Austrian Academy of Sciences Press, Vienna, 15–28, https://doi.org/10.1553/0x00020a13, 2001. a, b, c
Kurth, W. S., Hospodarsky, G. B., Gurnett, D. A., Cecconi, B.,
Louarn, P., Lecacheux, A., Zarka, P., Rucker, H. O., Boudjada, M.,
and Kaiser, M. L.: High spectral and temporal resolution observations of
Saturn kilometric radiation, Geophys. Res. Lett., 32, L20S07,
https://doi.org/10.1029/2005GL022648, 2005. a, b
Kurth, W. S., Robison, W. T., and Granroth, L. J.: CASSINI V/E/J/S/SS
RPWS EDITED WIDEBAND FULL RES V1.0, CO-V/E/J/S/SS-RPWS-2-REFDR-WBRFULL-V1.0, NASA Planetary Data System [data set],
https://doi.org/10.17189/1519615, 2018. a
Lamy, L., Zarka, P., Cecconi, B., Hess, S., and Prangé, R.:
Modeling of Saturn kilometric radiation arcs and equatorial shadow zone,
J. Geophys. Res.-Space, 113, A10213,
https://doi.org/10.1029/2008JA013464, 2008. a
Lamy, L., Cecconi, B., Prangé, R., Zarka, P., Nichols, J. D., and
Clarke, J. T.: An auroral oval at the footprint of Saturn's kilometric
radio sources, colocated with the UV aurorae, J. Geophys.
Res.-Space, 114, A10212, https://doi.org/10.1029/2009JA014401, 2009. a, b
Lamy, L., Schippers, P., Zarka, P., Cecconi, B., Arridge, C. S.,
Dougherty, M. K., Louarn, P., André, N., Kurth, W. S., Mutel,
R. L., Gurnett, D. A., and Coates, A. J.: Properties of Saturn
kilometric radiation measured within its source region, Geophys. Res.
Lett., 37, L12104, https://doi.org/10.1029/2010GL043415, 2010. a, b
Lamy, L., Cecconi, B., Zarka, P., Canu, P., Schippers, P., Kurth,
W. S., Mutel, R. L., Gurnett, D. A., Menietti, D., and Louarn, P.:
Emission and propagation of Saturn kilometric radiation: Magnetoionic modes,
beaming pattern, and polarization state, J. Geophys. Res.-Space, 116, A04212, https://doi.org/10.1029/2010JA016195, 2011. a
Lamy, L., Prangé, R., Pryor, W., Gustin, J., Badman, S. V.,
Melin, H., Stallard, T., Mitchell, D. G., and Brandt, P. C.:
Multispectral simultaneous diagnosis of Saturn's aurorae throughout a
planetary rotation, J. Geophys. Res.-Space, 118,
4817–4843, https://doi.org/10.1002/jgra.50404, 2013. a
Lamy, L., Zarka, P., Cecconi, B., Prangé, R., Kurth, W. S.,
Hospodarsky, G., Persoon, A., Morooka, M., Wahlund, J. E., and
Hunt, G. J.: The low-frequency source of Saturn's kilometric radiation,
Science, 362, aat2027, https://doi.org/10.1126/science.aat2027, 2018. a, b
Louarn, P., Roux, A., de Féraudy, H., Le Quéau, D.,
André, M., and Matson, L.: Trapped electrons as a free energy source
for the auroral kilometric radiation, J. Geophys. Res., 95,
5983–5995, https://doi.org/10.1029/JA095iA05p05983, 1990. a
McKean, M. E. and Winglee, R. M.: A model for the frequency fine structure
of auroral kilometric radiation, J. Geophys. Res., 96,
21055–21070, https://doi.org/10.1029/91JA01954, 1991. a, b, c
Melrose, D. B.: A phase-bunching mechanism for fine structures in auroral
kilometric radiation and Jovian decametric radiation, J. Geophys.
Res., 91, 7970–7980, https://doi.org/10.1029/JA091iA07p07970, 1986. a
Menietti, J. D. and Kurth, W. S.: Ordered Fine Structure in the Radio Emission Observed by Cassini Cluster and Polar, in: Planetary Radio Emissions VI, edited by: Rucker, H. O., Kurth, W. S., and Mann, G., Austrian Academy of Sciences Press, Vienna, 265–272, https://doi.org/10.1553/0x001231b9, 2006. a, b, c, d
Menietti, J. D., Wong, H. K., Kurth, W. S., Gurnett, D. A., Granroth,
L. J., and Groene, J. B.: Discrete, stimulated auroral kilometric
radiation observed in the Galileo and DE 1 wideband data, J.
Geophys. Res., 101, 10673–10680, https://doi.org/10.1029/96JA00362, 1996. a, b
Menietti, J. D.,Wong, H. K., Kurth,W. S., Gunnett, D. A., Granroth, L. J., and Groene, J. B.: Possible Stimulated AKR Observed in Galileo, DE-1 and Polar Wideband Data, in: Planetary Radio Emission IV, edited by: Rucker, H. O., Bauer, S. J., and Lecacheux, A., Austrian Academy of Sciences Press, Vienna, 259–273, https://doi.org/10.1553/0x0015cf01, 1997. a
Menietti, J. D., Mutel, R. L., Santolik, O., Scudder, J. D.,
Christopher, I. W., and Cook, J. M.: Striated drifting auroral
kilometric radiation bursts: Possible stimulation by upward traveling EMIC
waves, J. Geophys. Res.-Space, 111, A04214,
https://doi.org/10.1029/2005JA011339, 2006. a, b, c, d
Mutel, R. L., Peterson, W. M., Jaeger, T. R., and Scudder, J. D.:
Dependence of cyclotron maser instability growth rates on electron velocity
distributions and perturbation by solitary waves, J. Geophys.
Res.-Space, 112, A07211, https://doi.org/10.1029/2007JA012442, 2007. a
Mutel, R. L., Menietti, J. D., Gurnett, D. A., Kurth, W., Schippers,
P., Lynch, C., Lamy, L., Arridge, C., and Cecconi, B.: CMI growth
rates for Saturnian kilometric radiation, Geophys. Res. Lett., 37,
L19105, https://doi.org/10.1029/2010GL044940, 2010. a
Ness, N.: The magnetic environment of the known radio planets, in:
Planetary Radio Emissions II, edited by: Rucker, H. O., Bauer, S. J., and Pedersen, B. M., Austrian Academy of Sciences Press, Vienna, 3–13, https://doi.org/10.1553/0x0015ce2b, 1988. a
Nichols, J. D., Badman, S. V., Bunce, E. J., Clarke, J. T., Cowley,
S. W. H., Hunt, G. J., and Provan, G.: Saturn's northern auroras as
observed using the Hubble Space Telescope, Icarus, 263, 17–31,
https://doi.org/10.1016/j.icarus.2015.09.008, 2016. a
Persoon, A. M., Gurnett, D. A., Santolik, O., Kurth, W. S., Faden,
J. B., Groene, J. B., Lewis, G. R., Coates, A. J., Wilson, R. J.,
Tokar, R. L., Wahlund, J. E., and Moncuquet, M.: A diffusive
equilibrium model for the plasma density in Saturn's magnetosphere, J. Geophys. Res.-Space, 114, A04211,
https://doi.org/10.1029/2008JA013912, 2009. a
Pisa, D. and Taubenschuss, U.: Cassini RPWS/Wideband Spectrograms [data set], http://babeta.ufa.cas.cz/cas_wbr_ql/ (last access: 18 July 2022), 2021. a
Pottelette, R. and Treumann, R. A.: Electron holes in the auroral upward
current region, Geophys. Res. Lett., 32, L12104,
https://doi.org/10.1029/2005GL022547, 2005. a
Pottelette, R., Treumann, R. A., and Berthomier, M.: Auroral plasma
turbulence and the cause of auroral kilometric radiation fine structure,
J. Geophys. Res., 106, 8465–8476, https://doi.org/10.1029/2000JA000098,
2001. a, b
Pritchett, P. L. and Strangeway, R. J.: A simultation study of kilometric
radiation generation along an auroral field line, J. Geophys.
Res., 90, 9650–9662, https://doi.org/10.1029/JA090iA10p09650, 1985. a
Pritchett, P. L., Strangeway, R. J., Ergun, R. E., and Carlson, C. W.:
Generation and propagation of cyclotron maser emissions in the finite
auroral kilometric radiation source cavity, J. Geophys. Res.-Space, 107, 1437, https://doi.org/10.1029/2002JA009403, 2002. a, b
Riihimaa, J. J.: Evolution of the Spectral Fine Structure of Jupiter's
Decametric S-Storms, Earth Moon Planets, 53, 157–182,
https://doi.org/10.1007/BF00057430, 1991. a
Roux, A., Hilgers, A., de Feraudy, H., Le Queau, D., Louarn, P.,
Perraut, S., Bahnsen, A., Jespersen, M., Ungstrup, E., and Andre,
M.: Auroral kilometric radiation sources: In situ and remote observations
from Viking, J. Geophys. Res., 98, 11657–11670,
https://doi.org/10.1029/92JA02309, 1993. a
Schippers, P., Arridge, C. S., Menietti, J. D., Gurnett, D. A., Lamy,
L., Cecconi, B., Mitchell, D. G., André, N., Kurth, W. S.,
Grimald, S., Dougherty, M. K., Coates, A. J., Krupp, N., and Young,
D. T.: Auroral electron distributions within and close to the Saturn
kilometric radiation source region, J. Geophys. Res.-Space, 116, A05203, https://doi.org/10.1029/2011JA016461, 2011. a
Slottje, C.: Peculiar absorption and emission microstructures in the type IV
solar radio outburst of March 2, 1970, Sol. Phys., 25, 210–231,
https://doi.org/10.1007/BF00155758, 1972. a
Treumann, R. A.: The electron-cyclotron maser for astrophysical
application, Astron. Astrophys. Rev., 13, 229–315,
https://doi.org/10.1007/s00159-006-0001-y, 2006. a, b, c
Treumann, R. A. and Baumjohann, W.: Auroral kilometric radiation and
electron pairing, Front. Phys., 8, 386,
https://doi.org/10.3389/fphy.2020.00386, 2020. a
Wang, Z., Gurnett, D. A., Fischer, G., Ye, S. Y., Kurth, W. S.,
Mitchell, D. G., Leisner, J. S., and Russell, C. T.: Cassini
observations of narrowband radio emissions in Saturn's magnetosphere,
J. Geophys. Res.-Space, 115, A06213,
https://doi.org/10.1029/2009JA014847, 2010.
a, b
Wu, C. S. and Lee, L. C.: A theory of the terrestrial kilometric
radiation, Astrophys. J., 230, 621–626, https://doi.org/10.1086/157120,
1979. a
Ye, S.-Y., Gurnett, D. A., Fischer, G., Cecconi, B., Menietti, J. D.,
Kurth, W. S., Wang, Z., Hospodarsky, G. B., Zarka, P., and
Lecacheux, A.: Source locations of narrowband radio emissions detected at
Saturn, J. Geophys. Res.-Space, 114, A06219,
https://doi.org/10.1029/2008JA013855, 2009. a
Yoon, P. H. and Weatherwax, A. T.: A theory for AKR fine frequency
structure, Geophys. Res. Lett., 25, 4461–4464,
https://doi.org/10.1029/1998GL900210, 1998. a, b, c
Short summary
The polar light in its various colors and forms has fascinated human beings since ancient times. It is less well known that there are also radio emissions generated in the aurora at higher altitudes. Not just Earth, but some other planets of the solar system also have auroras and corresponding radio emissions. In our publication, we investigate and classify the spectral fine structures of a radio emission called Saturn kilometric radiation to find out more about this radiation process.
The polar light in its various colors and forms has fascinated human beings since ancient times....