Articles | Volume 39, issue 6
https://doi.org/10.5194/angeo-39-991-2021
https://doi.org/10.5194/angeo-39-991-2021
Regular paper
 | 
06 Dec 2021
Regular paper |  | 06 Dec 2021

Magnetotail reconnection asymmetries in an ion-scale, Earth-like magnetosphere

Christopher M. Bard and John C. Dorelli

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Numerical simulation studies
Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021,https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Crescent-shaped electron velocity distribution functions formed at the edges of plasma jets interacting with a tangential discontinuity
Gabriel Voitcu and Marius Echim
Ann. Geophys., 36, 1521–1535, https://doi.org/10.5194/angeo-36-1521-2018,https://doi.org/10.5194/angeo-36-1521-2018, 2018
Short summary

Cited articles

Artemyev, A. V., Petrukovich, A. A., Nakamura, R., and Zelenyi, L. M.: Cluster statistics of thin current sheets in the Earth magnetotail: Specifics of the dawn flank, proton temperature profiles and electrostatic effects, J. Geophys. Res.-Space, 116, A09233, https://doi.org/10.1029/2011JA016801, 2011. a
Asano, Y., Mukai, T., Hoshino, M., Saito, Y., Hayakawa, H., and Nagai, T.: Current sheet structure around the near-Earth neutral line observed by Geotail, J. Geophys. Res.-Space, 109, A02212, https://doi.org/10.1029/2003JA010114, 2004. a
Bard, C.: Tools for Studying Magnetospheric-Wind Interactions, PhD thesis, The University of Wisconsin – Madison, 2016. a
Bard, C. and Dorelli, J. C.: On the role of system size in Hall MHD magnetic reconnection, Phys. Plasmas, 25, 022103, https://doi.org/10.1063/1.5010785, 2018. a, b, c, d, e
Bard, C. M. and Dorelli, J. C.: A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics, J. Comput. Phys., 259, 444–460, https://doi.org/10.1016/j.jcp.2013.12.006, 2014. a, b
Download
Short summary
We use a computer code to study how a particular plasma effect, the Hall effect, changes how plasma behaves and interacts with magnetic fields behind planets in the magnetotail. We find that when the scale of the Hall effect is big enough compared to the scale of the magnetotail, plasma behavior is no longer symmetric. Measurements of magnetic activity and structure vary in time and differ between opposite sides of the tail. This fits well with findings from spacecraft data and other models.