Brackbill, J. U. and Barnes, D. C.: The effect of nonzero product
of
magnetic gradient and B on the numerical solution of the magnetohydrodynamic
equations, J. Comput. Phys., 35, 426–430,
https://doi.org/10.1016/0021-9991(80)90079-0, 1980.
a
Chen, Y., Tóth, G., Jia, X., Slavin, J. A., Sun, W., Markidis,
S., Gombosi, T. I., and Raines, J. M.: Studying Dawn-Dusk Asymmetries of
Mercury's Magnetotail Using MHD-EPIC Simulations, J. Geophys.
Res.-Space, 124, 8954–8973,
https://doi.org/10.1029/2019JA026840, 2019.
a,
b,
c,
d,
e,
f,
g
Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., and
Wesenberg, M.: Hyperbolic Divergence Cleaning for the MHD Equations,
J. Comput. Phys., 175, 645–673,
https://doi.org/10.1006/jcph.2001.6961, 2002.
a,
b,
c
Dewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., and Poh, G.:
MESSENGER Observations of Fast Plasma Flows in Mercury's Magnetotail, Geophys. Res. Lett.,
45, 10110–10118,
https://doi.org/10.1029/2018GL079056, 2018.
a,
b
Dong, C., Wang, L., Hakim, A., Bhattacharjee, A., Slavin, J. A.,
DiBraccio, G. A., and Germaschewski, K.: Global Ten-Moment Multifluid
Simulations of the Solar Wind Interaction with Mercury: From the Planetary
Conducting Core to the Dynamic Magnetosphere, Geophys. Res. Lett., 46, 11584–11596,
https://doi.org/10.1029/2019GL083180, 2019.
a,
b,
c,
d
Dorelli, J. C., Glocer, A., Collinson, G., and Tóth, G.: The role
of the Hall effect in the global structure and dynamics of planetary
magnetospheres: Ganymede as a case study, J. Geophys. Res.-Space, 120, 5377–5392,
https://doi.org/10.1002/2014JA020951, 2015.
a,
b,
c
Fatemi, S., Poppe, A. R., Delory, G. T., and Farrell, W. M.: AMITIS: A
3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics, in: Journal of
Physics Conference Series, J. Phys. Conf.
Ser., 837, 012017,
https://doi.org/10.1088/1742-6596/837/1/012017, 2017.
a
Gabrielse, C., Angelopoulos, V., Runov, A., and Turner, D. L.:
Statistical characteristics of particle injections throughout the equatorial
magnetotail, J. Geophys. Res.-Space, 119,
2512–2535,
https://doi.org/10.1002/2013JA019638, 2014.
a
Genestreti, K. J., Fuselier, S. A., Goldstein, J., Nagai, T., and
Eastwood, J. P.: The location and rate of occurrence of near-Earth
magnetotail reconnection as observed by Cluster and Geotail, J.
Atmos. Sol.-Terr. Phys., 121, 98–109,
https://doi.org/10.1016/j.jastp.2014.10.005, 2014.
a
Huba, J. D.: Hall Magnetohydrodynamics – A Tutorial, in: Space Plasma Simulation, edited by: Büchner, J., Dum, C., and Scholer, M., Lecture Notes in Physics, Vol. 615, 166–192, SAO/NASA Astrophysics Data System, 2003. a
Imber, S. M., Slavin, J. A., Auster, H. U., and Angelopoulos, V.: A
THEMIS survey of flux ropes and traveling compression regions: Location of
the near-Earth reconnection site during solar minimum, J.
Geophys. Res.-Space, 116, A02201,
https://doi.org/10.1029/2010JA016026, 2011.
a
Kepko, L., Glassmeier, K. H., Slavin, J. A., and Sundberg, T.:
Substorm Current Wedge at Earth and Mercury, in: Magnetotails in the Solar
System, Geophysical Monograph Series, 207, 361–372,
https://doi.org/10.1002/9781118842324.ch21, 2015.
a
Liska, M., Chatterjee, K., Tchekhovskoy, A. e., Yoon, D., van
Eijnatten, D., Hesp, C., Markoff, S., Ingram, A., and van der Klis,
M.: H-AMR: A New GPU-accelerated GRMHD Code for Exascale Computing With 3D
Adaptive Mesh Refinement and Local Adaptive Time-stepping, arXiv e-prints,
arXiv:1912.10192, 2019. a
Liu, J., Angelopoulos, V., Runov, A., and Zhou, X. Z.: On the current
sheets surrounding dipolarizing flux bundles in the magnetotail: The case for
wedgelets, J. Geophys. Res.-Space, 118, 2000–2020,
https://doi.org/10.1002/jgra.50092, 2013.
a
Liu, Y.-H., Li, T. C., Hesse, M., Sun, W. J., Liu, J., Burch, J.,
Slavin, J. A., and Huang, K.: Three-Dimensional Magnetic Reconnection
With a Spatially Confined X-Line Extent: Implications for Dipolarizing Flux
Bundles and the Dawn-Dusk Asymmetry, J. Geophys. Res.-Space, 124, 2819–2830,
https://doi.org/10.1029/2019JA026539, 2019.
a,
b,
c
Lu, S., Lin, Y., Angelopoulos, V., Artemyev, A. V., Pritchett, P. L.,
Lu, Q., and Wang, X. Y.: Hall effect control of magnetotail dawn-dusk
asymmetry: A three-dimensional global hybrid simulation, J.
Geophys. Res.-Space, 121, 11,882–11,895,
https://doi.org/10.1002/2016JA023325, 2016.
a,
b
Lu, S., Pritchett, P. L., Angelopoulos, V., and Artemyev, A. V.:
Formation of Dawn-Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet:
A Three-Dimensional Particle-In-Cell Simulation, J. Geophys.
Res.-Space, 123, 2801–2814,
https://doi.org/10.1002/2017JA025095, 2018.
a,
b,
c
Poh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun,
W.-J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., and
Smith, A. W.: Mercury's cross-tail current sheet: Structure, X-line
location and stress balance, Geophys. Res. Lett., 44, 678–686,
https://doi.org/10.1002/2016GL071612,
2017a.
a
Poh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun,
W.-J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., and
Smith, A. W.: Coupling between Mercury and its nightside magnetosphere:
Cross-tail current sheet asymmetry and substorm current wedge formation,
J. Geophys. Res.-Space, 122, 8419–8433,
https://doi.org/10.1002/2017JA024266, 2017b.
a,
b
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and De
Zeeuw, D. L.: A Solution-Adaptive Upwind Scheme for Ideal
Magnetohydrodynamics, J. Comput. Phys., 154, 284–309,
https://doi.org/10.1006/jcph.1999.6299, 1999.
a
Rostoker, G., Akasofu, S. I., Foster, J., Greenwald, R. A., Kamide,
Y., Kawasaki, K., Lui, A. T. Y., McPherron, R. L., and Russell,
C. T.: Magnetospheric substorms-definition and signatures, J. Geophys. Res.-Space, 85,
1663–1668,
https://doi.org/10.1029/JA085iA04p01663, 1980.
a
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell,
J., McFadden, J. P., Larson, D., Glassmeier, K. H., and Auster, U.:
THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett.,
36, L14106,
https://doi.org/10.1029/2009GL038980, 2009.
a
Schive, H.-Y., ZuHone, J. A., Goldbaum, N. J., Turk, M. J., Gaspari,
M., and Cheng, C.-Y.: GAMER-2: a GPU-accelerated adaptive mesh refinement
code – accuracy, performance, and scalability, Mon. Not. R. Astron. Soc., 481, 4815–4840,
https://doi.org/10.1093/mnras/sty2586, 2018.
a
Sitnov, M. I., Swisdak, M., and Divin, A. V.: Dipolarization fronts as a
signature of transient reconnection in the magnetotail, J.
Geophys. Res.-Space, 114, A04202,
https://doi.org/10.1029/2008JA013980, 2009.
a
Slavin, J. A., Tanskanen, E. I., Hesse, M., Owen, C. J., Dunlop,
M. W., Imber, S., Lucek, E. A., Balogh, A., and Glassmeier, K. H.:
Cluster observations of traveling compression regions in the near-tail,
J. Geophys. Res.-Space, 110, A06207,
https://doi.org/10.1029/2004JA010878, 2005.
a
Sonnerup, B. U. Ö.: Magnetic field reconnection, Solar System Plasma Physics, 3, 45–108,
1979. a
Sun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G.,
Poh, G. K., and Zurbuchen, T. H.: Spatial distribution of Mercury's flux
ropes and reconnection fronts: MESSENGER observations, J.
Geophys. Res.-Space, 121, 7590–7607,
https://doi.org/10.1002/2016JA022787, 2016.
a,
b
Sundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth,
H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H.,
Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, Ralph L., J.,
and Solomon, S. C.: MESSENGER observations of dipolarization events in
Mercury's magnetotail, J. Geophys. Res.-Space, 117,
A00M03,
https://doi.org/10.1029/2012JA017756, 2012.
a
Tanaka, T.: Finite Volume TVD Scheme on an Unstructured Grid System for
Three-Dimensional MHD Simulation of Inhomogeneous Systems Including Strong
Background Potential Fields, J. Comput. Phys., 111,
381–389,
https://doi.org/10.1006/jcph.1994.1071, 1994.
a
Toro, E. F.: Riemann solvers and numerical methods for fluid dynamics: A
practical introduction, Springer-Verlag, 1999. a
Tóth, G., Ma, Y., and Gombosi, T. I.: Hall magnetohydrodynamics on
block-adaptive grids, J. Comput. Phys., 227, 6967–6984,
https://doi.org/10.1016/j.jcp.2008.04.010, 2008.
a,
b
Tóth, G., Jia, X., Markidis, S., Peng, I. B., Chen, Y.,
Daldorff, L. K. S., Tenishev, V. M., Borovikov, D., Haiducek, J. D.,
Gombosi, T. I., Glocer, A., and Dorelli, J. C.: Extended
magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's
magnetosphere, J. Geophys. Res.-Space, 121,
1273–1293,
https://doi.org/10.1002/2015JA021997, 2016.
a,
b
Tóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., and
Peng, I. B.: Scaling the Ion Inertial Length and Its Implications for
Modeling Reconnection in Global Simulations, J. Geophys. Res.-Space, 122, 10336–10355,
https://doi.org/10.1002/2017JA024189, 2017.
a
Vasko, I. Y., Petrukovich, A. A., Artemyev, A. V., Nakamura, R., and
Zelenyi, L. M.: Earth's distant magnetotail current sheet near and beyond
lunar orbit, J. Geophys. Res.-Space, 120,
8663–8680,
https://doi.org/10.1002/2015JA021633, 2015.
a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
Carey, C., Polat, İ., Feng, Y., Moore, E. W., Vand erPlas, J.,
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and Contributors, S.: SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nat. Method., 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Wang, L., Germaschewski, K., Hakim, A., Dong, C., Raeder, J., and
Bhattacharjee, A.: Electron Physics in 3-D Two-Fluid 10-Moment Modeling of
Ganymede's Magnetosphere, J. Geophys. Res.-Space,
123, 2815–2830,
https://doi.org/10.1002/2017JA024761, 2018.
a,
b
Wang, Y., Feng, X., Zhou, Y., and Gan, X.: A multi-GPU finite volume
solver for magnetohydrodynamics-based solar wind simulations, Comput.
Phys. Commun., 238, 181–193,
https://doi.org/10.1016/j.cpc.2018.12.003, 2019.
a