Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-833-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-833-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polar tongue of ionisation during geomagnetic superstorm
Dimitry Pokhotelov
CORRESPONDING AUTHOR
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
Isabel Fernandez-Gomez
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
Claudia Borries
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
Related authors
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys., 43, 427–440, https://doi.org/10.5194/angeo-43-427-2025, https://doi.org/10.5194/angeo-43-427-2025, 2025
Short summary
Short summary
This study focuses on a TIMED Doppler Interferometer (TIDI)–meteor radar (MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI wind measurements and MR winds shows good agreement. A TIDI–MR seasonal comparison and analysis of the altitude–latitude dependence for winds are performed. TIDI reproduces the mean circulation well when compared with MRs and may be a useful lower boundary for general circulation models.
Florian Günzkofer, Gunter Stober, Johan Kero, David R. Themens, Anders Tjulin, Njål Gulbrandsen, Masaki Tsutsumi, and Claudia Borries
Ann. Geophys., 43, 331–348, https://doi.org/10.5194/angeo-43-331-2025, https://doi.org/10.5194/angeo-43-331-2025, 2025
Short summary
Short summary
The Earth’s magnetic field is not closed at high latitudes. Electrically charged particles can penetrate the Earth’s atmosphere, deposit their energy, and heat the local atmosphere–ionosphere. This presumably causes an upwelling of the neutral atmosphere, which affects the atmosphere–ionosphere coupling. We apply a new analysis technique to infer the atmospheric density from incoherent scatter radar measurements. We identify signs of particle precipitation impact on the neutral atmosphere.
Maria Gloria Tan Jun Rios, Claudia Borries, Huixin Liu, and Jens Mielich
Ann. Geophys., 43, 73–89, https://doi.org/10.5194/angeo-43-73-2025, https://doi.org/10.5194/angeo-43-73-2025, 2025
Short summary
Short summary
This study analyzes changes in the ionospheric response to solar flux over five complete solar cycles (1957 to 2023). We use Juliusruh hourly data of the peak electron density of the F2 layer, NmF2, and three solar extreme ultraviolet (EUV) radiation proxies. The response is better represented by a cubic regression, and F30 shows the highest correlation for describing NmF2 dependence over time. These results reveal a decrease in NmF2 influenced by the intensity of the solar activity index.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Cited articles
Akmaev, R. A., Fuller-Rowell, T. J., Wu, F., Forbes, J. M., Zhang, X., Anghel, A. F., Iredell, M. D., Moorthi, S., and Juang, H.-M.: Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED, Geophys. Res. Lett., 35, L03810, https://doi.org/10.1029/2007GL032584, 2008. a
Anderson, D.: Modeling the midlatitude F-region ionospheric storm using
east-west drift and a meridional wind, Planet. Space Sci., 24, 69–77, https://doi.org/10.1016/0032-0633(76)90063-5, 1976. a
Borries, C., Berdermann, J., Jakowski, N., and Wilken, V.: Ionospheric storms
– A challenge for empirical forecast of the total electron content, J. Geophys. Res.-Space, 120, 3175–3186,
https://doi.org/10.1002/2015JA020988, 2015. a
Borries, C., Jakowski, N., Kauristie, K., Amm, O., Mielich, J., and Kouba, D.:
On the dynamics of large-scale traveling ionospheric disturbances over
Europe on 20 November 2003, J. Geophys. Res.-Space,
122, 1199–1211, https://doi.org/10.1002/2016JA023050, 2017. a
Buonsanto, M. J.: Ionospheric Storms – A Review, Space Sci.
Rev., 88, 563–601, https://doi.org/10.1023/A:1005107532631, 1999. a
Burns, A., Wang, W., Killeen, T., and Solomon, S.: A “tongue” of neutral
composition, J. Atmos. Sol.-Terr. Phys., 66, 1457–1468, https://doi.org/10.1016/j.jastp.2004.04.009, 2004. a
Carlson Jr., H. C., Oksavik, K., Moen, J., and Pedersen, T.: Ionospheric patch formation: Direct measurements of the origin of a polar cap patch,
Geophys. Res. Lett., 31, L08806, https://doi.org/10.1029/2003GL018166, 2004. a
Codrescu, M. V., Negrea, C., Fedrizzi, M., Fuller-Rowell, T. J.,
Dobin, A., Jakowsky, N., Khalsa, H., Matsuo, T., and Maruyama, N.:
A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere
Electrodynamics (CTIPe) model, Space Weather, 10, 02001,
https://doi.org/10.1029/2011SW000736, 2012. a
Crowley, G., Hackert, C. L., Meier, R. R., Strickland, D. J., Paxton, L. J.,
Pi, X., Mannucci, A., Christensen, A. B., Morrison, D., Bust, G. S., Roble,
R. G., Curtis, N., and Wene, G.: Global thermosphere-ionosphere response to
onset of 20 November 2003 magnetic storm, J. Geophys. Res.-Space, 111, A10S18, https://doi.org/10.1029/2005JA011518, 2006. a, b
Dang, T., Lei, J., Wang, W., Wang, B., Zhang, B., Liu, J., Burns, A., and
Nishimura, Y.: Formation of Double Tongues of Ionization During the 17 March
2013 Geomagnetic Storm, J. Geophys. Res.-Space, 124,
10619–10630, https://doi.org/10.1029/2019JA027268, 2019. a
Deng, Y. and Ridley, A. J.: Role of vertical ion convection in the
high-latitude ionospheric plasma distribution, J. Geophys. Res.-Space, 111, A09314, https://doi.org/10.1029/2006JA011637, 2006. a
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G.,
Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y.,
Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley,
C. A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S.,
Reid, I. M., and Vincent, R. A.: An empirical model of the Earth's horizontal
wind fields: HWM07, J. Geophys. Res.-Space, 113, A12304, https://doi.org/10.1029/2008JA013668, 2008.
a
Erickson, P., Goncharenko, L., Nicolls, M., Ruohoniemi, M., and Kelley, M.:
Dynamics of North American sector ionospheric and thermospheric response
during the November 2004 superstorm, J. Atmos.
Sol.-Terr. Phys., 72, 292–301, https://doi.org/10.1016/j.jastp.2009.04.001,
2010. a
Fernandez-Gomez, I., Fedrizzi, M., Codrescu, M. V., Borries, C., Fillion, M.,
and Fuller-Rowell, T. J.: On the difference between real-time and research
simulations with CTIPe, Adv. Space Res., 64, 2077–2087,
https://doi.org/10.1016/j.asr.2019.02.028, 2019. a, b
Foster, J., Rideout, W., Sandel, B., Forrester, W., and Rich, F.: On the
relationship of SAPS to storm-enhanced density, J. Atmos.
Sol.-Terr.l Phys., 69, 303–313, https://doi.org/10.1016/j.jastp.2006.07.021,
2007. a
Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D.,
Rideout, W., McCready, M., van Eyken, A., Barnes, R. J., Greenwald, R. A.,
and Rich, F. J.: Multiradar observations of the polar tongue of ionization,
J. Geophys. Res.-Space, 110, A09S31, https://doi.org/10.1029/2004JA010928, 2005. a, b, c
Fuller-Rowell, T. J.: Storm-time response of the thermosphere-ionosphere
system, in: Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA
Spec. Sopron Book Ser., Vol. 2, edited by: Abdu, M. A. and Pancheva, D.,
Springer, Dordrecht, 419–434, https://doi.org/10.1007/978-94-007-0326-1_32, 2011. a
Fuller-Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V.,
and Millward, G. H.: A coupled thermosphere‐ionosphere model (CTIM), in:
STEP Handbook of Ionospheric Models, edited by: Schunk, R. W., Utah State University, Logan, 217–238, 1996. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release,
J. Geophys. Res.-Atmos., 107, 4754, https://doi.org/10.1029/2001JD001236, 2002. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J.
Geophys. Res.-Space, 108, 1062, https://doi.org/10.1029/2002JA009466, 2003. a
Heelis, R. A., Lowell, J. K., and Spiro, R. W.: A model of the high-latitude
ionospheric convection pattern, J. Geophys. Res.-Space
Phys., 87, 6339–6345, https://doi.org/10.1029/JA087iA08p06339, 1982. a, b
Heelis, R. A., Sojka, J. J., David, M., and Schunk, R. W.: Storm time density
enhancements in the middle-latitude dayside ionosphere, J. Geophys. Res.-Space, 114, A03315, https://doi.org/10.1029/2008JA013690, 2009. a
Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R.,
Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., and
Krankowski, A.: The IGS VTEC maps: a reliable source of ionospheric
information since 1998, J. Geodesy, 83, 263–275,
https://doi.org/10.1007/s00190-008-0266-1, 2009. a
Horvath, I. and Crozier, S.: Software developed for obtaining GPS-derived total electron content values, Radio Sci., 42, RS2002, https://doi.org/10.1029/2006RS003452, 2007. a
Huba, J. D., Sazykin, S., and Coster, A.: SAMI3-RCM simulation of the 17
March 2015 geomagnetic storm, J. Geophys. Res.-Space, 122, 1246–1257, https://doi.org/10.1002/2016JA023341, 2017. a, b
Immel, T. J. and Mannucci, A. J.: Ionospheric redistribution during geomagnetic
storms, J. Geophys. Res.-Space, 118, 7928–7939,
https://doi.org/10.1002/2013JA018919, 2013. a, b
Kamide, Y., McPherron, R. L., Gonzalez, W. D., Hamilton, D. C., Hudson, H. S., Joselyn, J. A., Kahler, S. W., Lyons, L. R., Lundstedt, H., and Szuszczewicz, E.: Magnetic Storms: Current Understanding and Outstanding Questions, American Geophysical Union (AGU), 28, 1–20, https://doi.org/10.1029/GM098p0001, 1997. a, b
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J.
Geophys. Res.-Space, 110, A02104, https://doi.org/10.1029/2004JA010649, 2005. a
Klimenko, M. V., Zakharenkova, I. E., Klimenko, V. V., Lukianova, R. Y., and
Cherniak, I. V.: Simulation and Observations of the Polar Tongue of
Ionization at Different Heights During the 2015 St. Patrick's Day Storms,
Space Weather, 17, 1073–1089, https://doi.org/10.1029/2018SW002143, 2019. a, b, c, d
Knudsen, W. C.: Magnetospheric convection and the high-latitude F2 ionosphere,
J. Geophys. Res., 79, 1046–1055,
https://doi.org/10.1029/JA079i007p01046, 1974. a
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C., and Su, S.-Y.: Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field, J. Geophys. Res.-Space, 110, A12312, https://doi.org/10.1029/2005JA011304, 2005. a
Liu, J., Wang, W., Burns, A., Solomon, S. C., Zhang, S., Zhang, Y., and Huang,
C.: Relative importance of horizontal and vertical transports to the
formation of ionospheric storm-enhanced density and polar tongue of
ionization, J. Geophys. Res.-Space, 121, 8121–8133,
https://doi.org/10.1002/2016JA022882, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m
Lu, G., Richmond, A. D., Lühr, H., and Paxton, L.: High-latitude energy input
and its impact on the thermosphere, J. Geophys. Res.-Space, 121, 7108–7124, https://doi.org/10.1002/2015JA022294, 2016. a
Maute, A.: Thermosphere-Ionosphere-Electrodynamics General Circulation Model
for the Ionospheric Connection Explorer: TIEGCM-ICON, Space Sci. Rev.,
212, 523–551, https://doi.org/10.1007/s11214-017-0330-3, 2017. a, b
Mendillo, M., Papagiannis, M. D., and Klobuchar, J. A.: Average behavior of the midlatitude F-region parameters NT, Nmax, and τ during geomagnetic storms, J. Geophys. Res., 77, 4891–4895, https://doi.org/10.1029/JA077i025p04891, 1972. a
Millward, G., Müller-Wodarg, I., Aylward, A., Fuller-Rowell, T., Richmond, A.,
and Moffett, R.: An investigation into the influence of tidal forcing on F
region equatorial vertical ion drift using a global ionosphere-thermosphere
model with coupled electrodynamics, J. Geophys. Res.-Space, 106, 24733–24744, https://doi.org/10.1029/2000ja000342, 2001. a
Millward, G. H., Moffett, R. J., Quegan, S., and Fuller-Rowell, T. J.: A
coupled thermosphere-ionosphere-plasmasphere model (CTIP), in: STEP Handbook of Ionospheric Models, edited by: Schunk, R. W., Utah State University, Logan, 239–279, 1996. a
Mitchell, C. N. and Spencer, P. S. J.: A three-dimensional time-dependent
algorithm for ionospheric imaging using GPS, Ann. Geophys., 46,
687–696, https://doi.org/10.4401/ag-4373, 2003. a, b
Mitchell, C. N., Yin, P., Spencer, P. S. J., and Pokhotelov, D.: Ionization
Dynamics During Storms of the Recent Solar Maximum in Midlatitude Ionospheric Dynamics and Disturbances, American Geophysical Union (AGU), Geophys. Monogr. Ser.,
181, 83–90, https://doi.org/10.1029/181GM09,
2008. a
Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., and Spogli, L.:
Space weather challenges of the polar cap ionosphere, J. Space Weather Space
Clim., 3, A02, https://doi.org/10.1051/swsc/2013025, 2013. a, b
NASA: OMNIWeb Data Service [data set], available at: http://omniweb.gsfc.nasa.gov (last access: 21 September 2021), 2021a. a
NASA: CDAWeb Data Service [data set], available at: https://cdaweb.gsfc.nasa.gov/pub/data/gps, (last access: 21 September 2021), 2021b. a
National Center for Atmospheric Research: High Altitude Observatory [code], available at: https://www.hao.ucar.edu/modeling/tgcm, last access: 21 September 2021. a
Pokhotelov, D., Mitchell, C. N., Jayachandran, P. T., MacDougall, J. W., and
Denton, M. H.: Ionospheric response to the corotating interaction
region-driven geomagnetic storm of October 2002, J. Geophys. Res.-Space, 114, A12311, https://doi.org/10.1029/2009JA014216, 2009. a
Prikryl, P., Jayachandran, P. T., Chadwick, R., and Kelly, T. D.: Climatology
of GPS phase scintillation at northern high latitudes for the period from
2008 to 2013, Ann. Geophys., 33, 531–545,
https://doi.org/10.5194/angeo-33-531-2015, 2015. a
Prölss, G. W.: Ionospheric F-region storms, in: Handbook of Atmospheric
Electrodynamics II, edited by: Volland, H., CRC Press, Boca Raton,
https://doi.org/10.1201/9780203713297, 195–248, 1995. a
Prölss, G. W.: Ionospheric Storms at Mid-Latitude: A Short Review, in:
Midlatitude Ionospheric Dynamics and Disturbances, American Geophysical Union (AGU), Geophys.
Monogr. Ser., 181, 9–24,
https://doi.org/10.1029/181GM03, 2008. a
Prölss, G. W. and Werner, S.: Vibrationally excited nitrogen and oxygen and
the origin of negative ionospheric storms, J. Geophys. Res.-Space, 107, 1016, https://doi.org/10.1029/2001JA900126, 2002. a
Pryse, S. E., Whittick, E. L., Aylward, A. D., Middleton, H. R., Brown, D. S.,
Lester, M., and Secan, J. A.: Modelling the tongue-of-ionisation using CTIP
with SuperDARN electric potential input: verification by radiotomography,
Ann. Geophys., 27, 1139–1152, https://doi.org/10.5194/angeo-27-1139-2009, 2009. a
Qian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., Richmond,
A. D., Roble, R. G., Solomon, S. C., and Wang, W.: The NCAR TIE-GCM: A
Community Model of the Coupled Thermosphere/Ionosphere System, in:
Modeling the Ionosphere-Thermosphere System, American Geophysical Union, Geophys. Monogr. Ser.,
201, 73–83,
https://doi.org/10.1002/9781118704417.ch7, 2014. a
Richmond, A. D., Ridley, E. C., and Roble, R. G.: A
thermosphere/ionosphere general circulation model with coupled
electrodynamics, Geophys. Res. Lett., 19, 601–604,
https://doi.org/10.1029/92GL00401, 1992. a
Rishbeth, H.: How the thermospheric circulation affects the ionospheric
F2-layer, J. Atmos. Sol.-Terr. Phys., 60, 1385–1402, https://doi.org/10.1016/S1364-6826(98)00062-5, 1998. a, b
Rishbeth, H., Fuller-Rowell, T. J., and Rodger, A. S.: F-layer storms and
thermospheric composition, Phys. Scripta, 36, 327–336,
https://doi.org/10.1088/0031-8949/36/2/024, 1987. a
Rishbeth, H., Heelis, R. A., Makela, J. J., and Basu, S.: Storming the
Bastille: the effect of electric fields on the ionospheric F-layer, Ann.
Geophys., 28, 977–981, https://doi.org/10.5194/angeo-28-977-2010, 2010. a
Rodger, A. S., Wells, G. D., Moffett, R. J., and Bailey, G. J.: The variability
of Joule heating, and its effects on the ionosphere and thermosphere, Ann.
Geophys., 19, 773–781, https://doi.org/10.5194/angeo-19-773-2001, 2001. a
Samama, N.: Global Positioning: Technologies and Performance, Wiley, Hoboken,
2008. a
Sojka, J. J., Bowline, M. D., and Schunk, R. W.: Patches in the polar
ionosphere: UT and seasonal dependence, J. Geophys. Res.-Space, 99, 14959–14970, https://doi.org/10.1029/93JA03327,
1994. a, b, c
Spencer, P. S. J. and Mitchell, C. N.: Imaging of fast moving electron density
structures in the polar cap, Ann. Geophys., 50, 427–434,
https://doi.org/10.4401/ag-3074, 2007. a, b, c
Swisdak, M., Huba, J. D., Joyce, G., and Huang, C.-S.: Simulation study of a
positive ionospheric storm phase observed at Millstone Hill, Geophys. Res. Lett., 33, L02104, https://doi.org/10.1029/2005GL024973, 2006. a, b, c, d
Thomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster,
A. J., Foster, J. C., and Erickson, P. J.: Direct observations of the role of
convection electric field in the formation of a polar tongue of ionization
from storm enhanced density, J. Geophys. Res.-Space,
118, 1180–1189, https://doi.org/10.1002/jgra.50116, 2013. a
Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M. A., Sobral, J. H. A.,
Gonzalez, W., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., Fejer, B.,
Fuller-Rowell, T. J., Kozyra, J., Foster, J. C., Coster, A., and Vasyliunas,
V. M.: Global dayside ionospheric uplift and enhancement associated with
interplanetary electric fields, J. Geophys. Res.-Space, 109, A08302, https://doi.org/10.1029/2003JA010342, 2004. a
Volland, H.: Dynamics of the disturbed ionosphere, Space Sci. Rev., 34,
327–335, https://doi.org/10.1007/BF00175287, 1983. a
Weimer, D. R.: Improved ionospheric electrodynamic models and application to
calculating Joule heating rates, J. Geophys. Res.-Space, 110, A05306, https://doi.org/10.1029/2004JA010884, 2005. a, b, c, d
Wu, Q., Emery, B. A., Shepherd, S. G., Ruohoniemi, J. M., Frissell, N. A., and
Semeter, J.: High-latitude thermospheric wind observations and simulations
with SuperDARN data driven NCAR TIEGCM during the December 2006 magnetic
storm, J. Geophys. Res.-Space, 120, 6021–6028,
https://doi.org/10.1002/2015JA021026, 2015. a
Yeh, H.-C. and Foster, J. C.: Storm time heavy ion outflow at mid-latitude,
J. Geophys. Res.-Space, 95, 7881–7891,
https://doi.org/10.1029/JA095iA06p07881, 1990. a
Yin, P., Mitchell, C., and Bust, G.: Observations of the F region height
redistribution in the storm-time ionosphere over Europe and the USA using GPS
imaging, Geophys. Res. Lett., 33, L18803, https://doi.org/10.1029/2006GL027125, 2006.
a, b
Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E.,
Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C.-C.,
Yashiro, S., and Zhukov, A. N.: Solar and interplanetary sources of major
geomagnetic storms (Dst ≤−100 nT) during 1996–2005, J. Geophys. Res.-Space, 112, 1314–1337, https://doi.org/10.1029/2007JA012321, 2007.
a, b
Zhang, S.-R., Erickson, P. J., Zhang, Y., Wang, W., Huang, C., Coster, A. J.,
Holt, J. M., Foster, J. F., Sulzer, M., and Kerr, R.: Observations of
ion-neutral coupling associated with strong electrodynamic disturbances
during the 2015 St. Patrick's Day storm, J. Geophys. Res.-Space, 122, 1314–1337, https://doi.org/10.1002/2016JA023307, 2017. a
Short summary
During geomagnetic storms, enhanced solar wind and changes in the interplanetary magnetic field lead to ionisation anomalies across the polar regions. The superstorm of 20 November 2003 was one of the largest events in recent history. Numerical simulations of ionospheric dynamics during the storm are compared with plasma observations to understand the mechanisms forming the polar plasma anomalies. The results are important for understanding and forecasting space weather in polar regions.
During geomagnetic storms, enhanced solar wind and changes in the interplanetary magnetic field...