Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-833-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-833-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polar tongue of ionisation during geomagnetic superstorm
Dimitry Pokhotelov
CORRESPONDING AUTHOR
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
Isabel Fernandez-Gomez
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
Claudia Borries
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
Related authors
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019, https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
Short summary
Twelve years of radar observations from a mid-latitude location in Kühlungsborn, Germany have been analysed to study characteristics of mesospheric summer echoes (MSEs). The statistical analysis shows that MSEs have a strong daytime preference and early summer seasonal preference. It is demonstrated that the meridional wind transport from polar regions is the important controlling factor for MSEs, while no clear connection to geomagnetic and solar activity is found.
Dimitry Pokhotelov, Erich Becker, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 36, 825–830, https://doi.org/10.5194/angeo-36-825-2018, https://doi.org/10.5194/angeo-36-825-2018, 2018
Short summary
Short summary
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to the upper atmosphere and ionosphere playing an important role in the vertical coupling. Ground radar measurements of the seasonal variability of tides are compared with global numerical simulations. The agreement with radar data and limitations of the numerical model are discussed. The work represents a first step in modelling the impact of tidal dynamics on the upper atmosphere and ionosphere.
D. Pokhotelov, I. J. Rae, K. R. Murphy, and I. R. Mann
Ann. Geophys., 33, 697–701, https://doi.org/10.5194/angeo-33-697-2015, https://doi.org/10.5194/angeo-33-697-2015, 2015
Short summary
Short summary
Solar wind impacts the Earth’s magnetic cavity driving waves in the magnetosphere. The waves in the range of few mHz are important for the dynamics of energetic particles trapped inside the magnetosphere. The average solar wind parameters are known to control of magnetospheric wave power. Here the variability of solar wind parameters, rather than average properties, is analysed. It is shown that the magnetospheric wave power is most sensitive to variations in the interplanetary magnetic field.
M. van de Kamp, D. Pokhotelov, and K. Kauristie
Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014, https://doi.org/10.5194/angeo-32-1511-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
Florian Günzkofer, Gunter Stober, Johan Kero, David R. Themens, Njål Gulbrandsen, Masaki Tsutsumi, and Claudia Borries
EGUsphere, https://doi.org/10.5194/egusphere-2024-2708, https://doi.org/10.5194/egusphere-2024-2708, 2024
Short summary
Short summary
The Earth’s magnetic field is not closed at high latitudes. Electrically charged particles can penetrate the Earth’s atmosphere, deposit their energy, and heat the local atmosphere-ionosphere. This presumably causes an upwelling of the neutral atmosphere which affects the atmosphere-ionosphere coupling. We apply a new analysis technique to infer the atmospheric density from incoherent scatter radar measurements. We show qualitatively how particle precipitation affects the neutral atmosphere.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Maria Gloria Tan Jun Rios, Claudia Borries, Huixin Liu, and Jens Mielich
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-11, https://doi.org/10.5194/angeo-2024-11, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
The study analyzes hourly NmF2 data from Juliusruh (1957 to 2023) and examines the response of NmF2 to solar flux by using three different solar EUV proxies for six solar cycles, including a separation of the ascending and descending phases. The response is better represented with a quadratic regression and F30 shows the highest correlation for describing NmF2 dependence over time. These results revealed a steady decrease in NmF2, influenced by the intensity of the solar activity index.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019, https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
Short summary
Twelve years of radar observations from a mid-latitude location in Kühlungsborn, Germany have been analysed to study characteristics of mesospheric summer echoes (MSEs). The statistical analysis shows that MSEs have a strong daytime preference and early summer seasonal preference. It is demonstrated that the meridional wind transport from polar regions is the important controlling factor for MSEs, while no clear connection to geomagnetic and solar activity is found.
Dimitry Pokhotelov, Erich Becker, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 36, 825–830, https://doi.org/10.5194/angeo-36-825-2018, https://doi.org/10.5194/angeo-36-825-2018, 2018
Short summary
Short summary
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to the upper atmosphere and ionosphere playing an important role in the vertical coupling. Ground radar measurements of the seasonal variability of tides are compared with global numerical simulations. The agreement with radar data and limitations of the numerical model are discussed. The work represents a first step in modelling the impact of tidal dynamics on the upper atmosphere and ionosphere.
D. Pokhotelov, I. J. Rae, K. R. Murphy, and I. R. Mann
Ann. Geophys., 33, 697–701, https://doi.org/10.5194/angeo-33-697-2015, https://doi.org/10.5194/angeo-33-697-2015, 2015
Short summary
Short summary
Solar wind impacts the Earth’s magnetic cavity driving waves in the magnetosphere. The waves in the range of few mHz are important for the dynamics of energetic particles trapped inside the magnetosphere. The average solar wind parameters are known to control of magnetospheric wave power. Here the variability of solar wind parameters, rather than average properties, is analysed. It is shown that the magnetospheric wave power is most sensitive to variations in the interplanetary magnetic field.
M. van de Kamp, D. Pokhotelov, and K. Kauristie
Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014, https://doi.org/10.5194/angeo-32-1511-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Polar ionosphere
Fine-scale dynamics of fragmented aurora-like emissions
Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard
Plasma density gradients at the edge of polar ionospheric holes: the absence of phase scintillation
AMPERE polar cap boundaries
Characteristics of the layered polar mesosphere summer echoes occurrence ratio observed by EISCAT VHF 224 MHz radar
Daniel K. Whiter, Hanna Sundberg, Betty S. Lanchester, Joshua Dreyer, Noora Partamies, Nickolay Ivchenko, Marco Zaccaria Di Fraia, Rosie Oliver, Amanda Serpell-Stevens, Tiffany Shaw-Diaz, and Thomas Braunersreuther
Ann. Geophys., 39, 975–989, https://doi.org/10.5194/angeo-39-975-2021, https://doi.org/10.5194/angeo-39-975-2021, 2021
Short summary
Short summary
This paper presents an analysis of high-resolution optical and radar observations of a phenomenon called fragmented aurora-like emissions (FAEs) observed close to aurora in the high Arctic. The observations suggest that FAEs are not caused by high-energy electrons or protons entering the atmosphere along Earth's magnetic field and are, therefore, not aurora. The speeds of the FAEs and their internal dynamics were measured and used to evaluate theories for how the FAEs are produced.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Luke A. Jenner, Alan G. Wood, Gareth D. Dorrian, Kjellmar Oksavik, Timothy K. Yeoman, Alexandra R. Fogg, and Anthea J. Coster
Ann. Geophys., 38, 575–590, https://doi.org/10.5194/angeo-38-575-2020, https://doi.org/10.5194/angeo-38-575-2020, 2020
Short summary
Short summary
The boundary of regions with a plasma density much lower than background was investigated in the northern polar cap using observations of ionospheric plasma density. Similar regions with an above-background density have been linked to fluctuations in phase and amplitude in radio waves traversing the density gradient at their boundary. These fluctuations were absent through the gradient in the below-background regions; thus, a minimum of both density and gradient are required for scintillation.
Angeline G. Burrell, Gareth Chisham, Stephen E. Milan, Liam Kilcommons, Yun-Ju Chen, Evan G. Thomas, and Brian Anderson
Ann. Geophys., 38, 481–490, https://doi.org/10.5194/angeo-38-481-2020, https://doi.org/10.5194/angeo-38-481-2020, 2020
Short summary
Short summary
The Earth's polar upper atmosphere changes along with the magnetic field, other parts of the atmosphere, and the Sun. When studying these changes, knowing the polar region that the data come from is vital, as different processes dominate the area where the aurora is and poleward of the aurora (the polar cap). The boundary between these areas is hard to find, so this study used a different boundary and figured out how they are related. Future studies can now find their polar region more easily.
Shucan Ge, Hailong Li, Tong Xu, Mengyan Zhu, Maoyan Wang, Lin Meng, Safi Ullah, and Abdur Rauf
Ann. Geophys., 37, 417–427, https://doi.org/10.5194/angeo-37-417-2019, https://doi.org/10.5194/angeo-37-417-2019, 2019
Short summary
Short summary
The paper investigates the occurrence of polar mesosphere summer echoes (PMSEs) over a solar cycle. Besides the statistical study of the layered PMSE occurrence ratio, the authors propose a method to deal with the discontinuous EISCAT radar measurements. The method makes it easier to establish a relationship between the layered PMSEs and solar and geomagnetic activities. The paper presents a relatively large data set that brings results. It can be recommended in future research on the PMSEs.
Cited articles
Akmaev, R. A., Fuller-Rowell, T. J., Wu, F., Forbes, J. M., Zhang, X., Anghel, A. F., Iredell, M. D., Moorthi, S., and Juang, H.-M.: Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED, Geophys. Res. Lett., 35, L03810, https://doi.org/10.1029/2007GL032584, 2008. a
Anderson, D.: Modeling the midlatitude F-region ionospheric storm using
east-west drift and a meridional wind, Planet. Space Sci., 24, 69–77, https://doi.org/10.1016/0032-0633(76)90063-5, 1976. a
Borries, C., Berdermann, J., Jakowski, N., and Wilken, V.: Ionospheric storms
– A challenge for empirical forecast of the total electron content, J. Geophys. Res.-Space, 120, 3175–3186,
https://doi.org/10.1002/2015JA020988, 2015. a
Borries, C., Jakowski, N., Kauristie, K., Amm, O., Mielich, J., and Kouba, D.:
On the dynamics of large-scale traveling ionospheric disturbances over
Europe on 20 November 2003, J. Geophys. Res.-Space,
122, 1199–1211, https://doi.org/10.1002/2016JA023050, 2017. a
Buonsanto, M. J.: Ionospheric Storms – A Review, Space Sci.
Rev., 88, 563–601, https://doi.org/10.1023/A:1005107532631, 1999. a
Burns, A., Wang, W., Killeen, T., and Solomon, S.: A “tongue” of neutral
composition, J. Atmos. Sol.-Terr. Phys., 66, 1457–1468, https://doi.org/10.1016/j.jastp.2004.04.009, 2004. a
Carlson Jr., H. C., Oksavik, K., Moen, J., and Pedersen, T.: Ionospheric patch formation: Direct measurements of the origin of a polar cap patch,
Geophys. Res. Lett., 31, L08806, https://doi.org/10.1029/2003GL018166, 2004. a
Codrescu, M. V., Negrea, C., Fedrizzi, M., Fuller-Rowell, T. J.,
Dobin, A., Jakowsky, N., Khalsa, H., Matsuo, T., and Maruyama, N.:
A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere
Electrodynamics (CTIPe) model, Space Weather, 10, 02001,
https://doi.org/10.1029/2011SW000736, 2012. a
Crowley, G., Hackert, C. L., Meier, R. R., Strickland, D. J., Paxton, L. J.,
Pi, X., Mannucci, A., Christensen, A. B., Morrison, D., Bust, G. S., Roble,
R. G., Curtis, N., and Wene, G.: Global thermosphere-ionosphere response to
onset of 20 November 2003 magnetic storm, J. Geophys. Res.-Space, 111, A10S18, https://doi.org/10.1029/2005JA011518, 2006. a, b
Dang, T., Lei, J., Wang, W., Wang, B., Zhang, B., Liu, J., Burns, A., and
Nishimura, Y.: Formation of Double Tongues of Ionization During the 17 March
2013 Geomagnetic Storm, J. Geophys. Res.-Space, 124,
10619–10630, https://doi.org/10.1029/2019JA027268, 2019. a
Deng, Y. and Ridley, A. J.: Role of vertical ion convection in the
high-latitude ionospheric plasma distribution, J. Geophys. Res.-Space, 111, A09314, https://doi.org/10.1029/2006JA011637, 2006. a
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G.,
Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y.,
Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley,
C. A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S.,
Reid, I. M., and Vincent, R. A.: An empirical model of the Earth's horizontal
wind fields: HWM07, J. Geophys. Res.-Space, 113, A12304, https://doi.org/10.1029/2008JA013668, 2008.
a
Erickson, P., Goncharenko, L., Nicolls, M., Ruohoniemi, M., and Kelley, M.:
Dynamics of North American sector ionospheric and thermospheric response
during the November 2004 superstorm, J. Atmos.
Sol.-Terr. Phys., 72, 292–301, https://doi.org/10.1016/j.jastp.2009.04.001,
2010. a
Fernandez-Gomez, I., Fedrizzi, M., Codrescu, M. V., Borries, C., Fillion, M.,
and Fuller-Rowell, T. J.: On the difference between real-time and research
simulations with CTIPe, Adv. Space Res., 64, 2077–2087,
https://doi.org/10.1016/j.asr.2019.02.028, 2019. a, b
Foster, J., Rideout, W., Sandel, B., Forrester, W., and Rich, F.: On the
relationship of SAPS to storm-enhanced density, J. Atmos.
Sol.-Terr.l Phys., 69, 303–313, https://doi.org/10.1016/j.jastp.2006.07.021,
2007. a
Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D.,
Rideout, W., McCready, M., van Eyken, A., Barnes, R. J., Greenwald, R. A.,
and Rich, F. J.: Multiradar observations of the polar tongue of ionization,
J. Geophys. Res.-Space, 110, A09S31, https://doi.org/10.1029/2004JA010928, 2005. a, b, c
Fuller-Rowell, T. J.: Storm-time response of the thermosphere-ionosphere
system, in: Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA
Spec. Sopron Book Ser., Vol. 2, edited by: Abdu, M. A. and Pancheva, D.,
Springer, Dordrecht, 419–434, https://doi.org/10.1007/978-94-007-0326-1_32, 2011. a
Fuller-Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V.,
and Millward, G. H.: A coupled thermosphere‐ionosphere model (CTIM), in:
STEP Handbook of Ionospheric Models, edited by: Schunk, R. W., Utah State University, Logan, 217–238, 1996. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release,
J. Geophys. Res.-Atmos., 107, 4754, https://doi.org/10.1029/2001JD001236, 2002. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J.
Geophys. Res.-Space, 108, 1062, https://doi.org/10.1029/2002JA009466, 2003. a
Heelis, R. A., Lowell, J. K., and Spiro, R. W.: A model of the high-latitude
ionospheric convection pattern, J. Geophys. Res.-Space
Phys., 87, 6339–6345, https://doi.org/10.1029/JA087iA08p06339, 1982. a, b
Heelis, R. A., Sojka, J. J., David, M., and Schunk, R. W.: Storm time density
enhancements in the middle-latitude dayside ionosphere, J. Geophys. Res.-Space, 114, A03315, https://doi.org/10.1029/2008JA013690, 2009. a
Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R.,
Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., and
Krankowski, A.: The IGS VTEC maps: a reliable source of ionospheric
information since 1998, J. Geodesy, 83, 263–275,
https://doi.org/10.1007/s00190-008-0266-1, 2009. a
Horvath, I. and Crozier, S.: Software developed for obtaining GPS-derived total electron content values, Radio Sci., 42, RS2002, https://doi.org/10.1029/2006RS003452, 2007. a
Huba, J. D., Sazykin, S., and Coster, A.: SAMI3-RCM simulation of the 17
March 2015 geomagnetic storm, J. Geophys. Res.-Space, 122, 1246–1257, https://doi.org/10.1002/2016JA023341, 2017. a, b
Immel, T. J. and Mannucci, A. J.: Ionospheric redistribution during geomagnetic
storms, J. Geophys. Res.-Space, 118, 7928–7939,
https://doi.org/10.1002/2013JA018919, 2013. a, b
Kamide, Y., McPherron, R. L., Gonzalez, W. D., Hamilton, D. C., Hudson, H. S., Joselyn, J. A., Kahler, S. W., Lyons, L. R., Lundstedt, H., and Szuszczewicz, E.: Magnetic Storms: Current Understanding and Outstanding Questions, American Geophysical Union (AGU), 28, 1–20, https://doi.org/10.1029/GM098p0001, 1997. a, b
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J.
Geophys. Res.-Space, 110, A02104, https://doi.org/10.1029/2004JA010649, 2005. a
Klimenko, M. V., Zakharenkova, I. E., Klimenko, V. V., Lukianova, R. Y., and
Cherniak, I. V.: Simulation and Observations of the Polar Tongue of
Ionization at Different Heights During the 2015 St. Patrick's Day Storms,
Space Weather, 17, 1073–1089, https://doi.org/10.1029/2018SW002143, 2019. a, b, c, d
Knudsen, W. C.: Magnetospheric convection and the high-latitude F2 ionosphere,
J. Geophys. Res., 79, 1046–1055,
https://doi.org/10.1029/JA079i007p01046, 1974. a
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C., and Su, S.-Y.: Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field, J. Geophys. Res.-Space, 110, A12312, https://doi.org/10.1029/2005JA011304, 2005. a
Liu, J., Wang, W., Burns, A., Solomon, S. C., Zhang, S., Zhang, Y., and Huang,
C.: Relative importance of horizontal and vertical transports to the
formation of ionospheric storm-enhanced density and polar tongue of
ionization, J. Geophys. Res.-Space, 121, 8121–8133,
https://doi.org/10.1002/2016JA022882, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m
Lu, G., Richmond, A. D., Lühr, H., and Paxton, L.: High-latitude energy input
and its impact on the thermosphere, J. Geophys. Res.-Space, 121, 7108–7124, https://doi.org/10.1002/2015JA022294, 2016. a
Maute, A.: Thermosphere-Ionosphere-Electrodynamics General Circulation Model
for the Ionospheric Connection Explorer: TIEGCM-ICON, Space Sci. Rev.,
212, 523–551, https://doi.org/10.1007/s11214-017-0330-3, 2017. a, b
Mendillo, M., Papagiannis, M. D., and Klobuchar, J. A.: Average behavior of the midlatitude F-region parameters NT, Nmax, and τ during geomagnetic storms, J. Geophys. Res., 77, 4891–4895, https://doi.org/10.1029/JA077i025p04891, 1972. a
Millward, G., Müller-Wodarg, I., Aylward, A., Fuller-Rowell, T., Richmond, A.,
and Moffett, R.: An investigation into the influence of tidal forcing on F
region equatorial vertical ion drift using a global ionosphere-thermosphere
model with coupled electrodynamics, J. Geophys. Res.-Space, 106, 24733–24744, https://doi.org/10.1029/2000ja000342, 2001. a
Millward, G. H., Moffett, R. J., Quegan, S., and Fuller-Rowell, T. J.: A
coupled thermosphere-ionosphere-plasmasphere model (CTIP), in: STEP Handbook of Ionospheric Models, edited by: Schunk, R. W., Utah State University, Logan, 239–279, 1996. a
Mitchell, C. N. and Spencer, P. S. J.: A three-dimensional time-dependent
algorithm for ionospheric imaging using GPS, Ann. Geophys., 46,
687–696, https://doi.org/10.4401/ag-4373, 2003. a, b
Mitchell, C. N., Yin, P., Spencer, P. S. J., and Pokhotelov, D.: Ionization
Dynamics During Storms of the Recent Solar Maximum in Midlatitude Ionospheric Dynamics and Disturbances, American Geophysical Union (AGU), Geophys. Monogr. Ser.,
181, 83–90, https://doi.org/10.1029/181GM09,
2008. a
Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., and Spogli, L.:
Space weather challenges of the polar cap ionosphere, J. Space Weather Space
Clim., 3, A02, https://doi.org/10.1051/swsc/2013025, 2013. a, b
NASA: OMNIWeb Data Service [data set], available at: http://omniweb.gsfc.nasa.gov (last access: 21 September 2021), 2021a. a
NASA: CDAWeb Data Service [data set], available at: https://cdaweb.gsfc.nasa.gov/pub/data/gps, (last access: 21 September 2021), 2021b. a
National Center for Atmospheric Research: High Altitude Observatory [code], available at: https://www.hao.ucar.edu/modeling/tgcm, last access: 21 September 2021. a
Pokhotelov, D., Mitchell, C. N., Jayachandran, P. T., MacDougall, J. W., and
Denton, M. H.: Ionospheric response to the corotating interaction
region-driven geomagnetic storm of October 2002, J. Geophys. Res.-Space, 114, A12311, https://doi.org/10.1029/2009JA014216, 2009. a
Prikryl, P., Jayachandran, P. T., Chadwick, R., and Kelly, T. D.: Climatology
of GPS phase scintillation at northern high latitudes for the period from
2008 to 2013, Ann. Geophys., 33, 531–545,
https://doi.org/10.5194/angeo-33-531-2015, 2015. a
Prölss, G. W.: Ionospheric F-region storms, in: Handbook of Atmospheric
Electrodynamics II, edited by: Volland, H., CRC Press, Boca Raton,
https://doi.org/10.1201/9780203713297, 195–248, 1995. a
Prölss, G. W.: Ionospheric Storms at Mid-Latitude: A Short Review, in:
Midlatitude Ionospheric Dynamics and Disturbances, American Geophysical Union (AGU), Geophys.
Monogr. Ser., 181, 9–24,
https://doi.org/10.1029/181GM03, 2008. a
Prölss, G. W. and Werner, S.: Vibrationally excited nitrogen and oxygen and
the origin of negative ionospheric storms, J. Geophys. Res.-Space, 107, 1016, https://doi.org/10.1029/2001JA900126, 2002. a
Pryse, S. E., Whittick, E. L., Aylward, A. D., Middleton, H. R., Brown, D. S.,
Lester, M., and Secan, J. A.: Modelling the tongue-of-ionisation using CTIP
with SuperDARN electric potential input: verification by radiotomography,
Ann. Geophys., 27, 1139–1152, https://doi.org/10.5194/angeo-27-1139-2009, 2009. a
Qian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., Richmond,
A. D., Roble, R. G., Solomon, S. C., and Wang, W.: The NCAR TIE-GCM: A
Community Model of the Coupled Thermosphere/Ionosphere System, in:
Modeling the Ionosphere-Thermosphere System, American Geophysical Union, Geophys. Monogr. Ser.,
201, 73–83,
https://doi.org/10.1002/9781118704417.ch7, 2014. a
Richmond, A. D., Ridley, E. C., and Roble, R. G.: A
thermosphere/ionosphere general circulation model with coupled
electrodynamics, Geophys. Res. Lett., 19, 601–604,
https://doi.org/10.1029/92GL00401, 1992. a
Rishbeth, H.: How the thermospheric circulation affects the ionospheric
F2-layer, J. Atmos. Sol.-Terr. Phys., 60, 1385–1402, https://doi.org/10.1016/S1364-6826(98)00062-5, 1998. a, b
Rishbeth, H., Fuller-Rowell, T. J., and Rodger, A. S.: F-layer storms and
thermospheric composition, Phys. Scripta, 36, 327–336,
https://doi.org/10.1088/0031-8949/36/2/024, 1987. a
Rishbeth, H., Heelis, R. A., Makela, J. J., and Basu, S.: Storming the
Bastille: the effect of electric fields on the ionospheric F-layer, Ann.
Geophys., 28, 977–981, https://doi.org/10.5194/angeo-28-977-2010, 2010. a
Rodger, A. S., Wells, G. D., Moffett, R. J., and Bailey, G. J.: The variability
of Joule heating, and its effects on the ionosphere and thermosphere, Ann.
Geophys., 19, 773–781, https://doi.org/10.5194/angeo-19-773-2001, 2001. a
Samama, N.: Global Positioning: Technologies and Performance, Wiley, Hoboken,
2008. a
Sojka, J. J., Bowline, M. D., and Schunk, R. W.: Patches in the polar
ionosphere: UT and seasonal dependence, J. Geophys. Res.-Space, 99, 14959–14970, https://doi.org/10.1029/93JA03327,
1994. a, b, c
Spencer, P. S. J. and Mitchell, C. N.: Imaging of fast moving electron density
structures in the polar cap, Ann. Geophys., 50, 427–434,
https://doi.org/10.4401/ag-3074, 2007. a, b, c
Swisdak, M., Huba, J. D., Joyce, G., and Huang, C.-S.: Simulation study of a
positive ionospheric storm phase observed at Millstone Hill, Geophys. Res. Lett., 33, L02104, https://doi.org/10.1029/2005GL024973, 2006. a, b, c, d
Thomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster,
A. J., Foster, J. C., and Erickson, P. J.: Direct observations of the role of
convection electric field in the formation of a polar tongue of ionization
from storm enhanced density, J. Geophys. Res.-Space,
118, 1180–1189, https://doi.org/10.1002/jgra.50116, 2013. a
Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M. A., Sobral, J. H. A.,
Gonzalez, W., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., Fejer, B.,
Fuller-Rowell, T. J., Kozyra, J., Foster, J. C., Coster, A., and Vasyliunas,
V. M.: Global dayside ionospheric uplift and enhancement associated with
interplanetary electric fields, J. Geophys. Res.-Space, 109, A08302, https://doi.org/10.1029/2003JA010342, 2004. a
Volland, H.: Dynamics of the disturbed ionosphere, Space Sci. Rev., 34,
327–335, https://doi.org/10.1007/BF00175287, 1983. a
Weimer, D. R.: Improved ionospheric electrodynamic models and application to
calculating Joule heating rates, J. Geophys. Res.-Space, 110, A05306, https://doi.org/10.1029/2004JA010884, 2005. a, b, c, d
Wu, Q., Emery, B. A., Shepherd, S. G., Ruohoniemi, J. M., Frissell, N. A., and
Semeter, J.: High-latitude thermospheric wind observations and simulations
with SuperDARN data driven NCAR TIEGCM during the December 2006 magnetic
storm, J. Geophys. Res.-Space, 120, 6021–6028,
https://doi.org/10.1002/2015JA021026, 2015. a
Yeh, H.-C. and Foster, J. C.: Storm time heavy ion outflow at mid-latitude,
J. Geophys. Res.-Space, 95, 7881–7891,
https://doi.org/10.1029/JA095iA06p07881, 1990. a
Yin, P., Mitchell, C., and Bust, G.: Observations of the F region height
redistribution in the storm-time ionosphere over Europe and the USA using GPS
imaging, Geophys. Res. Lett., 33, L18803, https://doi.org/10.1029/2006GL027125, 2006.
a, b
Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E.,
Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C.-C.,
Yashiro, S., and Zhukov, A. N.: Solar and interplanetary sources of major
geomagnetic storms (Dst ≤−100 nT) during 1996–2005, J. Geophys. Res.-Space, 112, 1314–1337, https://doi.org/10.1029/2007JA012321, 2007.
a, b
Zhang, S.-R., Erickson, P. J., Zhang, Y., Wang, W., Huang, C., Coster, A. J.,
Holt, J. M., Foster, J. F., Sulzer, M., and Kerr, R.: Observations of
ion-neutral coupling associated with strong electrodynamic disturbances
during the 2015 St. Patrick's Day storm, J. Geophys. Res.-Space, 122, 1314–1337, https://doi.org/10.1002/2016JA023307, 2017. a
Short summary
During geomagnetic storms, enhanced solar wind and changes in the interplanetary magnetic field lead to ionisation anomalies across the polar regions. The superstorm of 20 November 2003 was one of the largest events in recent history. Numerical simulations of ionospheric dynamics during the storm are compared with plasma observations to understand the mechanisms forming the polar plasma anomalies. The results are important for understanding and forecasting space weather in polar regions.
During geomagnetic storms, enhanced solar wind and changes in the interplanetary magnetic field...