Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-795-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-795-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the relationship of energetic particle precipitation and mesopause temperature
Florine Enengl
CORRESPONDING AUTHOR
Division of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Space Environment and Effects Section, European Space Agency, Noordwijk, the Netherlands
Department of Physics, University of Oslo, Oslo, Norway
Noora Partamies
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Birkeland Centre for Space Science, Bergen, Norway
Nickolay Ivchenko
Division of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden
Lisa Baddeley
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Birkeland Centre for Space Science, Bergen, Norway
Related authors
No articles found.
Judit Pérez-Coll Jiménez, Nickolay Ivchenko, Ceona Lindstein, Lukas Krasauskas, Jonas Hedin, Donal Patrick Murtagh, Linda Megner, Björn Linder, and Jörg Gumbel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2324, https://doi.org/10.5194/egusphere-2025-2324, 2025
Short summary
Short summary
This study uses images taken by the Swedish satellite MATS to conduct a statistical analysis of the molecular oxygen atmospheric band emissions in the aurora. This auroral emission can not be observed from the ground, making it one of the least understood auroral emissions. Our results provide a new dataset with information on the peak altitude, geomagnetic location, and auroral intensity of 378 events detected between February and April 2023.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Björn Linder, Jörg Gumbel, Donal P. Murtagh, Linda Megner, Lukas Krasauskas, Doug Degenstein, Ole Martin Christensen, and Nickolay Ivchenko
EGUsphere, https://doi.org/10.5194/egusphere-2025-493, https://doi.org/10.5194/egusphere-2025-493, 2025
Short summary
Short summary
In this study, the primary instrument carried by the satellite MATS is compared to the OSIRIS instrument onboard the Odin satellite. A total of 36 close approaches between December 2022 and February 2023 were identified and analysed. The comparison reveals that the two instruments have good structural agreement and that MATS detects a signal that is ~20 % stronger than what is measured by OSIRIS.
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman
EGUsphere, https://doi.org/10.5194/egusphere-2025-265, https://doi.org/10.5194/egusphere-2025-265, 2025
Short summary
Short summary
The MATS satellite mission studies atmospheric gravity waves, crucial for momentum transport between atmospheric layers. Launched in November 2022, MATS uses a limb-viewing telescope to capture high-resolution images of Noctilucent clouds and airglow, visualizing wave patterns in the high atmosphere. This paper accompanies the public release of the level 1b data set, i.e. calibrated limb images. Later products will provide global maps of gravity wave properties, airglow and Noctilucent clouds.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Anton Goertz, Noora Partamies, Daniel Whiter, and Lisa Baddeley
Ann. Geophys., 41, 115–128, https://doi.org/10.5194/angeo-41-115-2023, https://doi.org/10.5194/angeo-41-115-2023, 2023
Short summary
Short summary
Poleward moving auroral forms (PMAFs) are specific types of aurora believed to be the signature of the connection of Earth's magnetic field to that of the sun. In this paper, we discuss the evolution of PMAFs with regard to their auroral morphology as observed in all-sky camera images. We interpret different aspects of this evolution in terms of the connection dynamics between the magnetic fields of Earth and the sun. This sheds more light on the magnetic interaction between the sun and Earth.
Daniel K. Whiter, Noora Partamies, Björn Gustavsson, and Kirsti Kauristie
Ann. Geophys., 41, 1–12, https://doi.org/10.5194/angeo-41-1-2023, https://doi.org/10.5194/angeo-41-1-2023, 2023
Short summary
Short summary
We measured the height of green and blue aurorae using thousands of camera images recorded over a 7-year period. Both colours are typically brightest at about 114 km altitude. When they peak at higher altitudes the blue aurora is usually higher than the green aurora. This information will help other studies which need an estimate of the auroral height. We used a computer model to explain our observations and to investigate how the green aurora is produced.
Derek McKay, Juha Vierinen, Antti Kero, and Noora Partamies
Geosci. Instrum. Method. Data Syst., 11, 25–35, https://doi.org/10.5194/gi-11-25-2022, https://doi.org/10.5194/gi-11-25-2022, 2022
Short summary
Short summary
When radio waves from our galaxy enter the Earth's atmosphere, they are absorbed by electrons in the upper atmosphere. It was thought that by measuring the amount of absorption, it would allow the height of these electrons in the atmosphere to be determined. If so, this would have significance for future instrument design. However, this paper demonstrates that it is not possible to do this, but it does explain how multiple-frequency measurements can nevertheless be useful.
Fasil Tesema, Noora Partamies, Daniel K. Whiter, and Yasunobu Ogawa
Ann. Geophys., 40, 1–10, https://doi.org/10.5194/angeo-40-1-2022, https://doi.org/10.5194/angeo-40-1-2022, 2022
Short summary
Short summary
In this study, we present the comparison between an auroral model and EISCAT radar electron densities during pulsating aurorae. We test whether an overpassing satellite measurement of the average energy spectrum is a reasonable estimate for pulsating aurora electron precipitation. When patchy pulsating aurora is dominant in the morning sector, the overpass-averaged spectrum is found to be a reasonable estimate – but not when there is a mix of pulsating aurora types in the post-midnight sector.
Daniel K. Whiter, Hanna Sundberg, Betty S. Lanchester, Joshua Dreyer, Noora Partamies, Nickolay Ivchenko, Marco Zaccaria Di Fraia, Rosie Oliver, Amanda Serpell-Stevens, Tiffany Shaw-Diaz, and Thomas Braunersreuther
Ann. Geophys., 39, 975–989, https://doi.org/10.5194/angeo-39-975-2021, https://doi.org/10.5194/angeo-39-975-2021, 2021
Short summary
Short summary
This paper presents an analysis of high-resolution optical and radar observations of a phenomenon called fragmented aurora-like emissions (FAEs) observed close to aurora in the high Arctic. The observations suggest that FAEs are not caused by high-energy electrons or protons entering the atmosphere along Earth's magnetic field and are, therefore, not aurora. The speeds of the FAEs and their internal dynamics were measured and used to evaluate theories for how the FAEs are produced.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Cited articles
Andrews, D. G.: An Introduction to Atmospheric Physics, 2nd edn.,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511800788, 2010. a
Blelly, P. L., Alcaydé, D., and van Eyken, A. P.: A new analysis
method for determining polar ionosphere and upper atmosphere characteristics
from ESR data: Illustration with IPY period, J. Geophys. Res.-Space, 115, A09322, https://doi.org/10.1029/2009JA014876, 2010. a
Cho, Y. M. and Shepherd, G. G.: Correlation of airglow temperature and emission
rate at Resolute Bay (74.68∘ N), over four winters (2001–2005, Geophys.
Res. Lett., 33, L06815, https://doi.org/10.1029/2005GL025298, 2006. a
Cresswell-Moorcock, K., Rodger, C. J., Kero, A., Collier, A. B., Clilverd,
M. A., Haggstrom, I., and Pitkanen, T.: A reexamination of latitudinal limits
of substorm-produced energetic electron precipitation, J. Geophys.
Res.-Space, 118, 6694–6705, https://doi.org/10.1002/jgra.50598, 2013. a, b
Gavrilyeva, G. and Ammosov, P.: Influence of geomagnetic activity on mesopause temperature over Yakutia, Atmos. Chem. Phys., 18, 3363–3367, https://doi.org/10.5194/acp-18-3363-2018, 2018. a
Harvey, V. L., Randall, C. E., Goncharenko, L., Becker, E., and France, J.: On
the Upward Extension of the Polar Vortices Into the Mesosphere, Journal of
geophysical research, Atmospheres, 123, 9171–9191, https://doi.org/10.1029/2018JD028815, 2018. a
Holmen, S., Dyrland, M., and Sigernes, F.: Mesospheric temperatures derived
from three decades of hydroxyl airglow measurements from Longyearbyen,
Svalbard (78∘ N, 15∘ E), Acta Geophys., 62, 302–315, https://doi.org/10.2478/s11600-013-0159-4,
2014. a
Holmen, S. E., Dyrland, M., and Sigernes, F.: Mesospheric temperatures derived
from three decades of hydroxyl airglow measurements from Longyearbyen,
Svalbard (78∘ N), Acta Geophys., 62, 302–315, https://doi.org/10.2478/s11600-013-0159-4, 2013. a
Lehtinen, M. S., Huuskonen, A., and Pirttilä, J.: First experiences of full-profile analysis with GUISDAP, Ann. Geophys., 14, 1487–1495, https://doi.org/10.1007/s00585-996-1487-3, 1996. a, b
Mulligan, F. J., Dyrland, M. E., Sigernes, F., and Deehr, C. S.: Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2) band integrated emission rate at Longyearbyen (78∘ N, 16∘ E), Ann. Geophys., 27, 4197–4205, https://doi.org/10.5194/angeo-27-4197-2009, 2009. a
Nesse Tyssøy, H., Stadsnes, J., Sørbø, M., Mertens, C. J., and Evans,
D. S.: Changes in upper mesospheric and lower thermospheric temperatures
caused by energetic particle precipitation, J. Geophys. Res.-Space, 115, A10323, https://doi.org/10.1029/2010JA015427, 2010. a, b
Rapp, M., Leitert, L., Latteck, R., Zecha, M., Hoffmann, P., Höffner, J.,
Hoppe, U., La Hoz, C., and Thrane, E. V.: Localized
mesosphere‐stratosphere‐troposphere radar echoes from the E region at
69∘ N: Properties and physical mechanisms, J. Geophys. Res.-Space, 116, A02320, https://doi.org/10.1029/2010JA016167, 2011. a
Shepherd, G., Cho, Y.-M., and Liu, G.: Correlations of mesospheric variability
ad their relation to the large-scale circulation during polar winter, J. Atmos. Sol.-Terr. Phy., 69, 2279–2291,
https://doi.org/10.1016/j.jastp.2007.06.007, 2007. a
Sigernes, F., Shumilov, N., Deehr, C. S., Nielsen, K. P., Svenøe, T., and
Havnes, O.: Hydroxyl rotational temperature record from the auroral station
in Adventdalen, Svalbard (78∘ N, 15∘ E), J. Geophys. Res.-Space, 108, 1342, https://doi.org/10.1029/2001JA009023, 2003. a, b
Suzuki, H., Tomikawa, Y., Taguchi, M., Nakamura, T., and Tsutsumi, M.:
Variations of OH rotational temperature over Syowa Station in the austral
winter of 2008, Earth Planet. Space, 62, 655–661, 2010a. a
Tjulin, A.: EISCAT experiments, available at:
https://eiscat.se/wp-content/uploads/2020/09/Experiments_v20200904.pdf
last access: 30 June 2020),
2017. a
Turunen, E., Kero, A., Verronen, P. T., Miyoshi, Y., Oyama, S.-I., and Saito,
S.: Mesospheric ozone destruction by high-energy electron precipitation
associated with pulsating aurora, J. Geophys. Res.-Atmos., 121, 11852–11861, https://doi.org/10.1002/2016JD025015, 2016. a
Wannberg, G., Wolf, I., Vanhainen, L. G., Koskenniemi, K.,
Röttger, J., Postila, M., Markkanen, J., Jacobsen, R.,
Stenberg, A., Larsen, R., Eliassen, S., Heck, S., and Huuskonen,
A.: The EISCAT Svalbard radar: A case study in modern incoherent scatter
radar system design, Radio Sci., 32, 2283–2307, https://doi.org/10.1029/97RS01803,
1997. a
Short summary
Energetic particle precipitation has the potential to change the neutral atmospheric temperature at the bottom of the ionosphere. We have searched for events and investigated a possible correlation between lower-ionosphere electron density enhancements and simultaneous neutral temperature changes. Six of the 10 analysed events are associated with a temperature decrease of 10–20K. The events change the chemical composition in the mesosphere, and the temperatures are probed at lower altitudes.
Energetic particle precipitation has the potential to change the neutral atmospheric temperature...