Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-613-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-613-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere
Geng Wang
CORRESPONDING AUTHOR
Harbin Institute of Technology, Shenzhen 518055, China
Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Mingyu Wu
Harbin Institute of Technology, Shenzhen 518055, China
Guoqiang Wang
Harbin Institute of Technology, Shenzhen 518055, China
Sudong Xiao
Harbin Institute of Technology, Shenzhen 518055, China
Irina Zhelavskaya
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Yuri Shprits
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Yuanqiang Chen
Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Zhengyang Zou
State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macao 999078, PR China
Zhonglei Gao
School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Tielong Zhang
CORRESPONDING AUTHOR
Space Research Institute, Austrian Academy of Sciences, Graz 8042, Austria
Related authors
No articles found.
Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, and Yoshifumi Futaana
Ann. Geophys., 42, 419–429, https://doi.org/10.5194/angeo-42-419-2024, https://doi.org/10.5194/angeo-42-419-2024, 2024
Short summary
Short summary
The Sun ejects a stream of charged particles into space that have to flow around planets like Venus. We quantify how this flow varies with spatial location using spacecraft measurements of the particles and magnetic field taken over several years. We find that this flow is connected to interactions with the heavier charged particles that originate from Venus’ upper atmosphere. These interactions are not unique to Venus, so we compare our results to similar studies at Mars.
Jianyuan Wang, Na Li, Wen Yi, Xianghui Xue, Iain Reid, Jianfei Wu, Hailun Ye, Jian Li, Zonghua Ding, Jinsong Chen, Guozhu Li, Yaoyu Tian, Boyuan Chang, Jiajing Wu, and Lei Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1662, https://doi.org/10.5194/egusphere-2024-1662, 2024
Short summary
Short summary
The mesospheric diurnal tides over low- and mid-latitude region are suppressed during the QBO disruptions and QBO westward wind phase, and are enhanced during QBO eastward wind phase, observed by a meteor radar chain. By using SD-WACCM-X simulations and ERA5 reanalysis, it is found that the stratospheric QBO winds affect the mesospheric diurnal tides by modulating the subtropical ozone variability in the upper stratosphere and the interaction between tides and gravity waves in the mesosphere.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254, https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Short summary
In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the MLT region. In this study, we apply a multistatic meteor radar system consisting of a monostatic meteor radar in Mengcheng (33.36° N, 116.49° E) and a remote receiver in Changfeng (31.98° N, 117.22° E) to estimate the two-dimensional horizontal wind field, and the horizontal divergence and relative vorticity of the wind field.
Xiaowen Hu, Guoqiang Wang, Zonghao Pan, and Tielong Zhang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-46, https://doi.org/10.5194/angeo-2021-46, 2021
Preprint withdrawn
Short summary
Short summary
We develop an automatic procedure based on the two criteria of the Wang-Pan method, and it consists of three parts: selection of the potentially high Alfvénic fluctuation events, evaluation of the OOLs, and determination of the zero offset. We test our automatic procedure by using three months of the partially calibrated data measured by VEX FGM, and find that our automatic procedure is successful to achieve as good results as the Davis-Smith method.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
D. Schmid, M. Volwerk, F. Plaschke, Z. Vörös, T. L. Zhang, W. Baumjohann, and Y. Narita
Ann. Geophys., 32, 651–657, https://doi.org/10.5194/angeo-32-651-2014, https://doi.org/10.5194/angeo-32-651-2014, 2014
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
H. Aryan, M. A. Balikhin, A. Taktakishvili, and T. L. Zhang
Ann. Geophys., 32, 223–230, https://doi.org/10.5194/angeo-32-223-2014, https://doi.org/10.5194/angeo-32-223-2014, 2014
E. E. Woodfield, R. B. Horne, S. A. Glauert, J. D. Menietti, and Y. Y. Shprits
Ann. Geophys., 31, 1619–1630, https://doi.org/10.5194/angeo-31-1619-2013, https://doi.org/10.5194/angeo-31-1619-2013, 2013
I. P. Pakhotin, S. N. Walker, Y. Y. Shprits, and M. A. Balikhin
Ann. Geophys., 31, 1437–1446, https://doi.org/10.5194/angeo-31-1437-2013, https://doi.org/10.5194/angeo-31-1437-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Waves and instabilities
Multipoint observations of compressional Pc5 pulsations in the dayside magnetosphere and corresponding particle signatures
Electron mirror branch: observational evidence from “historical” AMPTE-IRM and Equator-S measurements
An excitation mechanism for discrete chorus elements in the magnetosphere
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 36, 1563–1576, https://doi.org/10.5194/angeo-36-1563-2018, https://doi.org/10.5194/angeo-36-1563-2018, 2018
Short summary
Short summary
Historical AMPTE-IRM and Equator-S (Eq-S) observations of magnetic mirror modes in the magnetosheath already support the probably coexistence of ion and electron branches on the mirror mode.
Peter Bespalov and Olga Savina
Ann. Geophys., 36, 1201–1206, https://doi.org/10.5194/angeo-36-1201-2018, https://doi.org/10.5194/angeo-36-1201-2018, 2018
Short summary
Short summary
A VLF chorus is a very intense electromagnetic plasma wave that is naturally excited as a succession of discrete emissions near the magnetic equatorial plane outside the plasmasphere. We introduce a mechanism of chorus excitation under conditions when known mechanisms become ineffective. This kind of excitation is related to the amplification of short electromagnetic pulses from the noise level even in a stable plasma. Obtained results can explain some important features of the chorus emissions.
Cited articles
Balikhin, M. A., Shprits, Y. Y., Walker, S. N., Chen, L., Cornilleau-Wehrlin, N., Dandouras, I., Santolik, O., Carr, C., Yearby, K. H., and Weiss, B.: Observations of discrete harmonics emerging from equatorial noise, Nat. Commun., 6, 7703, https://doi.org/10.1038/ncomms8703, 2015. a, b
Boardsen, S. A., Gallagher, D. L., Gurnett, D. A., Peterson, W. K., and Green, J. L.: Funnel-shaped, low-frequency equatorial waves, J. Geophys. Res., 97, 14, https://doi.org/10.1029/92JA00827, 1992. a
Boardsen, S. A., Hospodarsky, G. B., Kletzing, C. A., Engebretson, M. J., Pfaff, R. F., Wygant, J. R., Kurth, W. S., Averkamp, T. F., Bounds, S. R., Green, J. L., and De Pascuale, S.: Survey of the frequency dependent latitudinal distribution of the fast magnetosonic wave mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science waveform receiver plasma wave analysis, J. Geophys. Res., 121, 2902–2921, https://doi.org/10.1002/2015JA021844, 2016. a, b
Bortnik, J. and Thorne, R. M.: Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves, J. Geophys. Res., 115, A07213, https://doi.org/10.1029/2010JA015283, 2010. a
Chen, L. and Thorne, R. M.: Perpendicular propagation of magnetosonic waves, Geophys. Res. Lett., 39, L14102, https://doi.org/10.1029/2012GL052485, 2012. a, b
Chen, L., Thorne, R. M., Jordanova, V. K., and Horne, R. B.: Global simulation of magnetosonic wave instability in the storm time magnetosphere, J. Geophys. Res., 115, A11222, https://doi.org/10.1029/2010JA015707, 2010a. a
Chen, L., Thorne, R. M., Jordanova, V. K., Wang, C.-P., Gkioulidou, M., Lyons, L., and Horne, R. B.: Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling, J. Geophys. Res., 115, A07209, https://doi.org/10.1029/2009JA015075, 2010b. a, b
Chen, L., Santolík, O., Hajoš, M., Zheng, L., Zhima, Z., Heelis, R., Hanzelka, M., Horne, R. B., and Parrot, M.: Source of the low-altitude hiss in the ionosphere, Geophys. Res. Lett., 44, 2060–2069, https://doi.org/10.1002/2016GL072181, 2017. a
Curtis, S. A. and Wu, C. S.: Gyroharmonic emissions induced by energetic ions in the equatorial plasmasphere, J. Geophys. Res., 84, 2597–2607, https://doi.org/10.1029/JA084iA06p02597, 1979. a
Fu, H. S., Cao, J. B., Zhima, Z., Khotyaintsev, Y. V., Angelopoulos, V., Santolík, O., Omura, Y., Taubenschuss, U., Chen, L., and Huang, S. Y.: First observation of rising-tone magnetosonic waves, Geophys. Res. Lett., 41, 7419–7426, https://doi.org/10.1002/2014GL061867, 2014. a
Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., Larsen, B. A., Puckett, A. D., Vigil, V. J., Friedel, R. H., Henderson, M. G., Niehof, J. T., Reeves, G. D., Thomsen, M. F., Hanley, J. J., George, D. E., Jahn, J.-M., Cortinas, S., De Los Santos, A., Dunn, G., Edlund, E., Ferris, M., Freeman, M., Maple, M., Nunez, C., Taylor, T., Toczynski, W., Urdiales, C., Spence, H. E., Cravens, J. A., Suther, L. L., and Chen, J.: Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission, Space. Sci. Rev., 179, 423–484, https://doi.org/10.1007/s11214-013-9968-7, 2013 (data available at: http://www.RBSP-ect.lanl.gov/, last access: 3 July 2021). a, b
Gary, S. P., Liu, K., Winske, D., and Denton, R. E.: Ion Bernstein instability in the terrestrial magnetosphere: Linear dispersion theory, J. Geophys. Res., 115, A12209, https://doi.org/10.1029/2010JA015965, 2010. a
Gulelmi, A. V., Klaine, B. I., and Potapov, A. S.: Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause, Planet. Space Sci., 23, 279–286, https://doi.org/10.1016/0032-0633(75)90133-6, 1975. a
Gurnett, D. A.: Plasma wave interactions with energetic ions near the magnetic equator, J. Geophys. Res., 81, 2765,
https://doi.org/10.1029/JA081i016p02765, 1976. a
Gurnett, D. A. and Burns, T. B.: The low-frequency cutoff of ELf emissions, J. Geophys. Res., 73, 7437–7445, https://doi.org/10.1029/JA073i023p07437, 1968. a
Horne, R. B.: Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation, J. Geophys. Res., 94, 8895–8909, https://doi.org/10.1029/JA094iA07p08895, 1989. a
Horne, R. B., Thorne, R. M., Glauert, S. A., Meredith, N. P., Pokhotelov, D., and Santolík, O.: Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett., 34, L17 107, https://doi.org/10.1029/2007GL030267, 2007. a
Kennel, C.: Low-Frequency Whistler Mode, Phys. Fluids, 9, 2190–2202, https://doi.org/10.1063/1.1761588, 1966. a
Kistler, L. M., Mouikis, C. G., Spence, H. E., Menz, A. M., Skoug, R. M., Funsten, H. O., Larsen, B. A., Mitchell, D. G., Gkioulidou, M., Wygant, J. R., and Lanzerotti, L. J.: The source of O+ in the storm time ring current, J. Geophys. Res., 121, 5333–5349, https://doi.org/10.1002/2015JA022204, 2016. a
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., Crawford, D., Dolan, J. S., Dvorsky, R., Hospodarsky, G. B., Howard, J., Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J., Mark, D., Pfaff, R., Phillips, J. R., Piker, C. W., Remington, S. L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., and Tyler, J.: The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP, Space. Sci. Rev., 179, 127–181, https://doi.org/10.1007/s11214-013-9993-6, 2013 (data available at: http://emfisis.physics.uiowa.edu/Flight/, last access: 3 July 2021). a, b
Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., and Wygant, J. R.: Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes, J. Geophys. Res., 120, 904–914, https://doi.org/10.1002/2014JA020857, 2015. a
Laakso, H., Junginger, H., Schmidt, R., Roux, A., and de Villedary, C.: Magnetosonic waves above fc(H+) at geostationary orbit: GEOS 2 results, J. Geophys. Res., 95, 10609–10621, https://doi.org/10.1029/JA095iA07p10609, 1990. a
Lei, M., Xie, L., Li, J., Pu, Z., Fu, S., Ni, B., Hua, M., Chen, L., and Li, W.: The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters, J. Geophys. Res., 122, 12338–12352, https://doi.org/10.1002/2016JA023801, 2017. a
Li, J., Bortnik, J., Thorne, R. M., Li, W., Ma, Q., Baker, D. N., Reeves, G. D., Fennell, J. F., Spence, H. E., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Angelopoulos, V., and Blake, J. B.: Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves, J. Geophys. Res., 121, 3212–3222, https://doi.org/10.1002/2016JA022370, 2016a. a
Li, J., Ni, B., Ma, Q., Xie, L., Pu, Z., Fu, S., Thorne, R. M., Bortnik, J., Chen, L., Li, W., Baker, D. N., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Fennell, J. F., Reeves, G. D., Spence, H. E., Funsten, H. O., and Summers, D.: Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance, Geophys. Res. Lett., 43, 3009–3016, https://doi.org/10.1002/2016GL067853, 2016b. a
Liu, K., Gary, S. P., and Winske, D.: Excitation of magnetosonic waves in the terrestrial magnetosphere: Particle-in-cell simulations, J. Geophys. Res., 116, A07212, https://doi.org/10.1029/2010JA016372, 2011. a
Liu, N., Su, Z., Zheng, H., Wang, Y., and Wang, S.: Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations, Geophys. Res. Lett., 45, 585–594, https://doi.org/10.1002/2017GL076382, 2018a. a, b
Liu, X., Chen, L., Yang, L., Xia, Z., and Malaspina, D. M.: One-Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere, J. Geophys. Res., 123, 587–599, https://doi.org/10.1002/2017JA024336, 2018b. a, b
Ma, Q., Li, W., Chen, L., Thorne, R. M., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., Henderson, M. G., and Spence, H. E.: The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere, Geophys. Res. Lett., 41, 6307–6313, https://doi.org/10.1002/2014GL061414, 2014. a, b
Maldonado, A. A., Chen, L., Claudepierre, S. G., Bortnik, J., Thorne, R. M., and Spence, H.: Electron butterfly distribution modulation by magnetosonic waves, Geophys. Res. Lett., 43, 3051–3059, https://doi.org/10.1002/2016GL068161, 2016. a
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A.: Science Objectives and Rationale for the Radiation Belt Storm Probes Mission, Space. Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y, 2013. a
Min, K., Takahashi, K., Ukhorskiy, A. Y., Manweiler, J. W., Spence, H. E., Singer, Howard, J., Claudepierre, S. G., Larsen, B. A., Soto-Chavez, A. R., and Cohen, R. J.: Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector, J. Geophys. Res., 122, 3013–3039, https://doi.org/10.1002/2016JA023770, 2017. a
Min, K., Liu, K., Wang, X., Chen, L., and Denton, R. E.: Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism, J. Geophys. Res., 123, 497–512, https://doi.org/10.1002/2017JA024867, 2018. a
Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper, S., Ukhorskiy, A., Manweiler, J. W., Jaskulek, S., Haggerty, D. K., Brand t, P., Sitnov, M., Keika, K., Hayes, J. R., Brown, L. E., Gurnee, R. S., Hutcheson, J. C., Nelson, K. S., Paschalidis, N., Rossano, E., and Kerem, S.: Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE), Space Sci. Rev., 179, 263–308, https://doi.org/10.1007/s11214-013-9965-x, 2013 (data available at: https://rbspgway.jhuapl.edu/Instr_RBSPICE, last access: 3 July 2021). a, b
Němec, F., Santolík, O., Gereová, K., Macúšová, E., de Conchy, Y., and Cornilleau-Wehrlin, N.: Initial results of a survey of equatorial noise emissions observed by the Cluster spacecraft, Planet. Space Sci., 53, 291–298, https://doi.org/10.1016/j.pss.2004.09.055, 2005. a
Perraut, S., Roux, A., Robert, P., Gendrin, R., Sauvaud, J. A., Bosqued, J. M., Kremser, G., and Korth, A.: A systematic study of ULF waves above from GEOS 1 and 2 measurements and their relationships with proton ring distributions, J. Geophys. Res., 87, 6219–6236, https://doi.org/10.1029/JA087iA08p06219, 1982. a
Posch, J. L., Engebretson, M. J., Olson, C. N., Thaller, S. A., Breneman, A. W., Wygant, J. R., Boardsen, S. A., Kletzing, C. A., Smith, C. W., and Reeves, G. D.: Low-harmonic magnetosonic waves observed by the Van Allen Probes, J. Geophys. Res., 120, 6230–6257, https://doi.org/10.1002/2015JA021179, 2015. a
Russell, C. T., Holzer, R. E., and Smith, E. J.: OGO 3 observations of ELF noise in the magnetosphere. 2. The nature of the equatorial noise., J. Geophys. Res., 75, 755–768, https://doi.org/10.1029/JA075i004p00755, 1970. a
Santolík, O. and Parrot, M.: Case studies on the wave propagation and polarization of ELF emissions observed by Freja around the local proton gyrofrequency, J. Geophys. Res., 104, 2459–2476, https://doi.org/10.1029/1998JA900045, 1999. a
Santolík, O., Pickett, J. S., Gurnett, D. A., Maksimovic, M., and Cornilleau-Wehrlin, N.: Spatiotemporal variability and propagation of equatorial noise observed by Cluster, J. Geophys. Res., 107, 1495, https://doi.org/10.1029/2001JA009159, 2002. a
Santolík, O., Parrot, M., and Lefeuvre, F.: Singular value decomposition methods for wave propagation analysis, Radio Sci., 38, 1010, https://doi.org/10.1029/2000RS002523, 2003. a
Santolík, O., Pickett, J. S., Gurnett, D. A., Menietti, J. D., Tsurutani, B. T., and Verkhoglyadova, O.: Survey of Poynting flux of whistler mode chorus in the outer zone, J. Geophys. Res., 115, A00F13, https://doi.org/10.1029/2009JA014925, 2010. a
Santolík, O., Parrot, M., and Němec, F.: Propagation of equatorial noise to low altitudes: Decoupling from the magnetosonic mode, Geophys. Res. Lett., 43, 6694–6704, https://doi.org/10.1002/2016GL069582, 2016. a
Shprits, Y. Y.: Estimation of bounce resonant scattering by fast magnetosonic waves, Geophys. Res. Lett., 43, 998–1006, https://doi.org/10.1002/2015GL066796, 2016. a
Su, Z., Wang, G., Liu, N., Zheng, H., Wang, Y., and Wang, S.: Direct observation of generation and propagation of magnetosonic waves following substorm injection, Geophys. Res. Lett., 44, 7587–7597, https://doi.org/10.1002/2017GL074362, 2017. a
Su, Z., Liu, N., Zheng, H., Wang, Y., and Wang, S.: Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes, Geophys. Res. Lett., 45, 565–577, https://doi.org/10.1002/2017GL076754, 2018. a
Summers, D. and Ma, C.: Rapid acceleration of electrons in the magnetosphere by fast-mode MHD waves, J. Geophys. Res., 105, 15887–15896, https://doi.org/10.1029/1999JA000408, 2000. a
Tao, X. and Li, X.: Theoretical bounce resonance diffusion coefficient for waves generated near the equatorial plane, Geophys. Res. Lett., 43, 7389–7397, https://doi.org/10.1002/2016GL070139, 2016. a
Teng, S., Li, W., Tao, X., Ma, Q., and Shen, X.: Characteristics and Generation of Low-Frequency Magnetosonic Waves Below the Proton Gyrofrequency, Geophys. Res. Lett., 46, 11652–11660, https://doi.org/10.1029/2019GL085372, 2019.
a, b
Tsyganenko, N. A. and Sitnov, M. I.: Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, https://doi.org/10.1029/2004JA010798, 2005 (data available at: http://geo.phys.spbu.ru/~tsyganenko/modeling.html, last access: 3 July 2021). a, b
Wang, G., Zhang, T. L., Gao, Z. L., Wu, M. Y., Wang, G. Q., and Schmid, D.: Propagation of EMIC Waves Inside the Plasmasphere: A Two-Event Study, J. Geophys. Res., 124, 8396–8415, https://doi.org/10.1029/2019JA027055, 2019. a
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., Hochmann, R., Harps, K., Dalton, G., McCauley, J., Rachelson, W., Gordon, D., Donakowski, B., Shultz, C., Smith, C., Diaz-Aguado, M., Fischer, J., Heavner, S., Berg, P., Malsapina, D. M., Bolton, M. K., Hudson, M., Strangeway, R. J., Baker, D. N., Li, X., Albert, J., Foster, J. C., Chaston, C. C., Mann, I., Donovan, E., Cully, C. M., Cattell, C. A., Krasnoselskikh, V., Kersten, K., Brenneman, A., and Tao, J. B.: The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission, Space. Sci. Rev., 179, 183–220, https://doi.org/10.1007/s11214-013-0013-7, 2013 (data available at: http://www.space.umn.edu/rbspefw-data/, last access: 3 July 2021). a, b
Xiao, F., Yang, C., Su, Z., Zhou, Q., He, Z., He, Y., Baker, D. N., Spence, H. E., Funsten, H. O., and Blake, J. B.: Wave-driven butterfly distribution of Van Allen belt relativistic electrons, Nat. Commun., 6, 8590, https://doi.org/10.1038/ncomms9590, 2015. a
Yang, C., Su, Z., Xiao, F., Zheng, H., Wang, Y., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., and Funsten, H. O.: A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region, Geophys. Res. Lett., 44, 3980–3990, https://doi.org/10.1002/2017GL073116, 2017. a
Yu, J., Li, L. Y., Cui, J., Cao, J. B., and Wang, J.: Effect of Low-Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere, J. Geophys. Res., 124, 3390–3401, https://doi.org/10.1029/2018JA026328, 2019. a
Yuan, Z., Yu, X., Ouyang, Z., Yao, F., Huang, S., and Funsten, H. O.: Simultaneous trapping of EMIC and MS waves by background plasmas, J. Geophys. Res., 124, 1635–1643, https://doi.org/10.1029/2018JA026149, 2019. a, b
Zhelavskaya, I. S., Spasojevic, M., Shprits, Y. Y., and Kurth, W. S.: Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft, J. Geophys. Res., 121, 4611–4625, https://doi.org/10.1002/2015JA022132, 2016. a
Zhelavskaya, I. S., Shprits, Y. Y., and Spasojević, M.: Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks, J. Geophys. Res., 122, 11227–11244, https://doi.org/10.1002/2017JA024406, 2017. a
Zou, Z., Zuo, P., Ni, B., Wei, F., Zhao, Z., Cao, X., Fu, S., and Gu, X.: Wave Normal Angle Distribution of Fast Magnetosonic Waves: A Survey of Van Allen Probes EMFISIS Observations, J. Geophys. Res., 124, 5663–5674, https://doi.org/10.1029/2019JA026556, 2019. a
Short summary
We investigate the reflection of magnetosonic (MS) waves at the local two-ion cutoff frequency in the outer plasmasphere, which is rarely reported. The observed wave signals demonstrate the reflection at the local two-ion cutoff frequency. From simulations, the waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly before reflection. These results may help to predict the global distribution of MS waves.
We investigate the reflection of magnetosonic (MS) waves at the local two-ion cutoff frequency...