Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-515-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-515-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benchmarking microbarom radiation and propagation model against infrasound recordings: a vespagram-based approach
Ekaterina Vorobeva
CORRESPONDING AUTHOR
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
NORSAR, Kjeller, Norway
Marine De Carlo
The French Alternative Energies and Atomic Energy Commission (CEA) – DAM, DIF, 91297 Arpajon, France
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, IRD, Ifremer, IUEM, Brest, France
Alexis Le Pichon
The French Alternative Energies and Atomic Energy Commission (CEA) – DAM, DIF, 91297 Arpajon, France
Patrick Joseph Espy
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
Sven Peter Näsholm
NORSAR, Kjeller, Norway
Department of Informatics, University of Oslo, Oslo, Norway
Related authors
Ekaterina Vorobeva and Yvan Orsolini
Weather Clim. Dynam., 6, 1015–1026, https://doi.org/10.5194/wcd-6-1015-2025, https://doi.org/10.5194/wcd-6-1015-2025, 2025
Short summary
Short summary
The factors behind why some polar stratospheric wind disturbances persist while others remain short are unclear. This study examines the impact of tropospheric high-pressure systems on the duration of three recent polar stratospheric wind disturbances in the winter of 2023/24. Two were short-lived, lasting under 7 d. The findings in this study show that two short disturbances could not develop into long-lasting events due to developing high-pressure systems over the planetary wave troughs.
Ekaterina Vorobeva and Yvan Orsolini
Weather Clim. Dynam., 6, 1015–1026, https://doi.org/10.5194/wcd-6-1015-2025, https://doi.org/10.5194/wcd-6-1015-2025, 2025
Short summary
Short summary
The factors behind why some polar stratospheric wind disturbances persist while others remain short are unclear. This study examines the impact of tropospheric high-pressure systems on the duration of three recent polar stratospheric wind disturbances in the winter of 2023/24. Two were short-lived, lasting under 7 d. The findings in this study show that two short disturbances could not develop into long-lasting events due to developing high-pressure systems over the planetary wave troughs.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data, 14, 4201–4230, https://doi.org/10.5194/essd-14-4201-2022, https://doi.org/10.5194/essd-14-4201-2022, 2022
Short summary
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Stefan Bender, Patrick J. Espy, and Larry J. Paxton
Ann. Geophys., 39, 899–910, https://doi.org/10.5194/angeo-39-899-2021, https://doi.org/10.5194/angeo-39-899-2021, 2021
Short summary
Short summary
The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. We have validated the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) products for average electron energy and electron energy flux by comparison to EISCAT electron density profiles. The good agreement shows that SSUSI far-UV observations can be used to provide ionization rate profiles throughout the auroral region.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Alexandr Smirnov, Marine De Carlo, Alexis Le Pichon, Nikolai M. Shapiro, and Sergey Kulichkov
Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, https://doi.org/10.5194/se-12-503-2021, 2021
Short summary
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Willem E. van Caspel, Patrick J. Espy, Robert E. Hibbins, and John P. McCormack
Ann. Geophys., 38, 1257–1265, https://doi.org/10.5194/angeo-38-1257-2020, https://doi.org/10.5194/angeo-38-1257-2020, 2020
Short summary
Short summary
Global-scale wind measurements from the upper regions of the atmosphere are used to isolate those atmospheric waves that follow the apparent motion of the sun over the course of a day. We present 16 years of near-continuous measurements, demonstrating the unique capabilities of the array of high-latitude SuperDARN radars. The validation steps outlined in our work also provide a methodology for future studies using wind measurements from the (expanding) network of SuperDARN radars.
Cited articles
Amezcua, J., Näsholm, S. P., Blixt, E. M., and Charlton-Perez, A. J.:
Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds,
Q. J. Roy. Meteor. Soc.,
146, 2634–2653, https://doi.org/10.1002/qj.3809, 2020. a, b
Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A.:
Ocean wave sources of seismic noise,
J. Geophys. Res.-Oceans,
116, C09004, https://doi.org/10.1029/2011JC006952, 2011. a
Assink, J. D., Le Pichon, A., Blanc, E., Kallel, M., and Khemiri, L.:
Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound,
J. Geophys. Res.-Atmos.,
119, 8659–8683, 2014. a
Baird, H. F. and Banwell, C. J.:
Recording of air-pressure oscillations associated with microseisms at Christchurch,
NZJ Sci. Technol. Sect. B,
21, 314–329, 1940. a
Bishop, J. W., Fee, D., and Szuberla, C. A. L.:
Improved infrasound array processing with robust estimators,
Geophys. J. Int.,
221, 2058–2074, https://doi.org/10.1093/gji/ggaa110, 2020. a
Blanc, E., Ceranna, L., Hauchecorne, A., Charlton-Perez, A., Marchetti, E., Evers, L., Kvaerna, T., Lastovicka, J., Eliasson, L., Crosby, N., Blanc-Benon, P., Le Pichon, A., Brachet, N., Pilger, C., Keckhut, P., Assink, J., Smets, P. M., Lee, C., Kero, J., Sindelarova, T., Kämpfer, N., Rüfenacht, R., Farges, T., Millet, C., Näsholm, S. P., Gibbons, S., Espy, P., Hibbins, R., Heinrich, P., Ripepe, M., Khaykin, S., Mze, N., and Chum, J.:
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project,
Surv. Geophys.,
39, 171–225, https://doi.org/10.1007/s10712-017-9444-0, 2018. a, b
Blanc, E., Pol, K., Le Pichon, A., Hauchecorne, A., Keckhut, P., Baumgarten, G., Hildebrand, J., Höffner, J., Stober, G., Hibbins, R., Espy, P., Rapp, M., Kaifler, B., Ceranna, L., Hupe, P., Hagen, J., Rüfenacht, R., Kämpfer, N., and Smets, P.:
Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 845–887, 2019. a, b
Brekhovskikh, L.:
Propagation of acoustic and infrared waves in natural waveguides over long distances,
Sov. Phys. Uspekhi,
3, 159–166, https://doi.org/10.1070/pu1960v003n01abeh003263, 1960. a
Brekhovskikh, L. M., Goncharov, V. V., Kurtepov, V. M., and Naugolny, K. A.:
Radiation of infrasound into atmosphere by surface-waves in ocean,
Izv. An. SSSR Fiz. Atm+.,
9, 899–907, 1973. a
Brissaud, Q., Martin, R., Garcia, R. F., and Komatitsch, D.:
Hybrid Galerkin numerical modelling of elastodynamics and compressible Navier–Stokes couplings: applications to seismo-gravito acoustic waves,
Geophys. J. Int.,
210, 1047–1069, 2017. a
Büeler, D., Beerli, R., Wernli, H., and Grams, C. M.:
Stratospheric influence on ECMWF sub-seasonal forecast skill for energy–industry-relevant surface weather in European countries,
Q. J. Roy. Meteor. Soc.,
146, 3675–3694, 2020. a
Cansi, Y.:
An automatic seismic event processing for detection and location: The PMCC method,
Geophys. Res. Lett.,
22, 1021–1024, 1995. a
Capon, J.:
High-resolution frequency-wavenumber spectrum analysis,
P. IEEE,
57, 1408–1418, 1969. a
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Krüger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and Watanabe, S.:
On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models,
J. Geophys. Res.-Atmos.,
118, 2494–2505, 2013. a, b
Chunchuzov, I., Kulichkov, S., Perepelkin, V., Popov, O., Firstov, P., Assink, J. D., and Marchetti, E.:
Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere,
J. Geophys. Res.-Atmos.,
120, 8828–8840, 2015. a, b, c
Conte, J. F., Chau, J. L., and Peters, D. H. W.:
Middle-and High-Latitude Mesosphere and Lower Thermosphere Mean Winds and Tides in Response to Strong Polar-Night Jet Oscillations,
J. Geophys. Res.-Atmos.,
124, 9262–9276, 2019. a
Dahlman, O., Mykkeltveit, S., and Haak, H.:
Nuclear test ban: converting political visions to reality,
Springer Science & Business Media, 2009. a
De Carlo, M., Hupe, P., Le Pichon, A., Ceranna, L., and Ardhuin, F.:
Global Microbarom Patterns: A First Confirmation of the Theory for Source and Propagation,
Geophys. Res. Lett.,
48, e2020GL090 163, https://doi.org/10.1029/2020GL090163, 2021. a, b, c, d
de Groot-Hedlin, C. D., Hedlin, M. A., and Drob, D. P.:
Atmospheric variability and infrasound monitoring,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 475–507, 2010. a
den Ouden, O. F. C., Assink, J. D., Smets, P. S. M., Shani-Kadmiel, S., Averbuch, G., and Evers, L. G.:
CLEAN beamforming for the enhanced detection of multiple infrasonic sources,
Geophys. J. Int.,
221, 305–317, 2020. a
Dessauer, F., Graffunder, W., and Schaffhauser, J.:
Über atmosphärische Pulsationen, Archiv für Meteorologie,
Arch. Meteor. Geophy. B,
3, 453–463, 1951. a
Diamantakis, M.:
Improving ECMWF forecasts of sudden stratospheric warmings,
ECMWF Newsletter,
141, 30–36, 2014. a
Diamond, M.:
Sound channels in the atmosphere,
J. Geophys. Res.,
68, 3459–3464, 1963. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.:
The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere,
J. Geophys. Res.-Atmos.,
125, e2019JD030920, https://doi.org/10.1029/2019JD030920, 2020a. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.:
The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling,
J. Geophys. Res.-Atmos.,
125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020b. a
Donn, W. L. and Posmentier, E. S.:
Infrasonic waves from the marine storm of April 7, 1966,
J. Geophys. Res.,
72, 2053–2061, 1967. a
Donn, W. L. and Rind, D.:
Natural infrasound as an atmospheric probe,
Geophys. J. Int.,
26, 111–133, 1971. a
Dorrington, J., Finney, I., Palmer, T., and Weisheimer, A.:
Beyond skill scores: exploring sub-seasonal forecast value through a case study of French month-ahead energy prediction,
Q. J. Roy. Meteor. Soc.,
146, 3623–3637, 2020. a
Eswaraiah, S., Kumar, K. N., Kim, Y. H., Chalapathi, G. V., Lee, W., Jiang, G., Yan, C., Yang, G., Ratnam, M. V., Prasanth, P. V., Rao, S. V. B., and Thyagarajan, K.:
Low-latitude mesospheric signatures observed during the 2017 sudden stratospheric warming using the fuke meteor radar and ERA-5,
J. Atmos. Sol.-Terr. Phy.,
207, 105352, https://doi.org/10.1016/j.jastp.2020.105352, 2020. a
Evers, L. G. and Siegmund, P.:
Infrasonic signature of the 2009 major sudden stratospheric warming,
Geophys. Res. Lett.,
36, L23808, https://doi.org/10.1029/2009GL041323, 2009. a, b
Garcés, M., Hansen, R. A., and Lindquist, K. G.:
Traveltimes for infrasonic waves propagating in a stratified atmosphere,
Geophys. J. Int.,
135, 255–263, 1998. a
Garcés, M., Willis, M., Hetzer, C., Le Pichon, A., and Drob, D.:
On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere,
Geophys. Res. Lett.,
31, L19304, https://doi.org/10.1029/2004GL020696, 2004. a
Gibbons, S., Ringdal, F., and Kværna, T.:
Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions,
J. Acoust. Soc. Am.,
122, EL158–EL164, 2007. a
Gibbons, S., Asming, V., Eliasson, L., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S. P., Raita, T., Roth, M., Tiira, T., and Vinogradov, Y.:
The European Arctic: A Laboratory for Seismoacoustic Studies,
Seismol. Res. Lett.,
86, 917–928, https://doi.org/10.1785/0220140230, 2015. a
Gibbons, S., Kværna, T., and Näsholm, S. P.:
Characterization of the infrasonic wavefield from repeating seismo-acoustic events,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 387–407, 2019. a
Gibbons, S. J., Kværna, T., Tiira, T., and Kozlovskaya, E.:
A Benchmark Case Study for Seismic Event Relative Location,
Geophys. J. Int.,
223, 1313–1326, https://doi.org/10.1093/gji/ggaa362, 2020. a
Gutenberg, B. and Benioff, H.:
Atmospheric-pressure waves near Pasadena,
Eos T. Am. Geophys. Un.,
22, 424–426, 1941. a
Hasselmann, K.:
A statistical analysis of the generation of microseisms,
Rev. Geophys.,
1, 177–210, 1963. a
Hedlin, M., Walker, K., Drob, D., and de Groot-Hedlin, C.:
Infrasound: Connecting the solid earth, oceans, and atmosphere,
Annu. Rev. Earth Pl. Sc.,
40, 327–354, 2012. a
Hibbins, R., Espy, P., and de Wit, R.:
Gravity-Wave Detection in the Mesosphere Using Airglow Spectrometers and Meteor Radars,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 649–668, 2019. a
Hillers, G., Graham, N., Campillo, M., Kedar, S., Landès, M., and Shapiro, N.:
Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models,
Geochem. Geophy. Geosy.,
13, Q01021, https://doi.org/10.1029/2011GC003875, 2012. a
Högbom, J. A.:
Aperture synthesis with a non-regular distribution of interferometer baselines,
Astron. Astrophys. Supp.,
15, 417–426, 1974. a
Ingate, S. F., Husebye, E. S., and Christoffersson, A.:
Regional arrays and optimum data processing schemes,
B. Seismol. Soc. Am.,
75, 1155–1177, 1985. a
Kanasewich, E. R., Hemmings, C. D., and Alpaslan, T.:
Nth-root stack nonlinear multichannel filter,
Geophysics,
38, 327–338, 1973. a
Kim, K. and Rodgers, A.:
Influence of low-altitude meteorological conditions on local infrasound propagation investigated by 3-D full-waveform modeling,
Geophys. J. Int.,
210, 1252–1263, 2017. a
Landès, M., Le Pichon, A., Shapiro, N. M., Hillers, G., and Campillo, M.:
Explaining global patterns of microbarom observations with wave action models,
Geophys. J. Int.,
199, 1328–1337, 2014. a
Le Pichon, A., Ceranna, L., Garcés, M., Drob, D., and Millet, C.:
On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere,
J. Geophys. Res.-Atmos.,
111, D11106, https://doi.org/10.1029/2005JD006690, 2006. a
Le Pichon, A., Vergoz, J., Herry, P., and Ceranna, L.:
Analyzing the detection capability of infrasound arrays in Central Europe,
J. Geophys. Res.-Atmos.,
113, D12115, https://doi.org//10.1029/2007JD009509, 2008. a
Le Pichon, A., Ceranna, L., and Vergoz, J.:
Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network,
J. Geophys. Res.-Atmos.,
117, 1–12, https://doi.org/10.1029/2011JD016670, 2012. a, b, c, d
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A., Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer, N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O., and Claud, C.:
Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models,
J. Geophys. Res.-Atmos.,
120, 8318–8331, 2015. a
Le Pichon, A., Ceranna, L., Vergoz, J., and Tailpied, D.:
Modeling the detection capability of the global IMS infrasound network,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 593–604, 2019. a
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.:
On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause,
J. Geophys. Res.-Atmos.,
121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016. a
Lü, Z., Li, F., Orsolini, Y. J., Gao, Y., and He, S.:
Understanding of european cold extremes, sudden stratospheric warming, and siberian snow accumulation in the winter of 2017/18,
J. Climate,
33, 527–545, 2020. a
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, 2016. a, b
Manney, G. L., Lawrence, Z. D., Santee, M. L., Read, W. G., Livesey, N. J., Lambert, A., Froidevaux, L., Pumphrey, H. C., and Schwartz, M. J.:
A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter,
Geophys. Res. Lett.,
42, 7808–7816, 2015. a
Marty, J.:
The IMS infrasound network: current status and technological developments,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 3–62, 2019. a
McFadden, P. L., Drummond, B. J., and Kravis, S.:
The N th-root stack: Theory, applications, and examples,
Geophysics,
51, 1879–1892, 1986. a
Mikhailov, A.:
Turbo, An Improved Rainbow Colormap for Visualization,
available at: https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html (last access: 25 July 2020), 2019. a
Mitnik, L. M., Kuleshov, V. P., Pichugin, M. K., and Mitnik, M. L.:
Sudden Stratospheric Warming in 2015–2016: Study with Satellite Passive Microwave Data and ERA5 Reanalysis,
in: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium,
5556–5559, IEEE, 2018. a
Muirhead, K. J. and Datt, R.:
The N-th root process applied to seismic array data,
Geophys. J. Int.,
47, 197–210, 1976. a
Näsholm, S. P., Vorobeva, E., Le Pichon, A., Orsolini, Y. J., Turquet, A. L., Hibbins, R. E., Espy, P. J., De Carlo, M., Assink, J. D., and Rodriguez, I. V.:
Semidiurnal tidal signatures in microbarom infrasound array measurements,
in: EGU General Assembly Conference Abstracts, Online, 4–8 May 2020, EGU2020-19035, https://doi.org/10.5194/egusphere-egu2020-19035, 2020. a
Nippress, A., Green, D. N., Marcillo, O. E., and Arrowsmith, S. J.:
Generating regional infrasound celerity-range models using ground-truth information and the implications for event location,
Geophys. J. Int.,
197, 1154–1165, 2014. a
Orsolini, Y. J. and Sorteberg, A.:
Projected changes in Eurasian and Arctic summer cyclones under global warming in the Bergen climate model,
Atmospheric and Oceanic Science Letters,
2, 62–67, 2009. a
Petersson, N. A. and Sjögreen, B.:
High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography,
J. Sci. Comput.,
74, 290–323, 2018. a
Pilger, C., Ceranna, L., Ross, J. O., Vergoz, J., Le Pichon, A., Brachet, N., Blanc, E., Kero, J., Liszka, L., Gibbons, S., Kvaerna, T., Näsholm, S. P., Marchetti, E., Ripepe, M., Smets, P., Evers, L., Ghica, D., Ionescu, C., Sindelarova, T., Ben Horin, Y., and Mialle, P.:
The European Infrasound Bulletin,
Pure Appl. Geophys.,
175, 3619–3638, 2018. a
Pilger, C., Gaebler, P., Ceranna, L., Le Pichon, A., Vergoz, J., Perttu, A., Tailpied, D., and Taisne, B.: Infrasound and seismoacoustic signatures of the 28 September 2018 Sulawesi super-shear earthquake, Nat. Hazards Earth Syst. Sci., 19, 2811–2825, https://doi.org/10.5194/nhess-19-2811-2019, 2019. a
Polavarapu, S., Shepherd, T. G., Rochon, Y., and Ren, S.:
Some challenges of middle atmosphere data assimilation,
Q. J. Roy. Meteor. Soc.,
131, 3513–3527, 2005. a
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.:
The stratospheric sudden warming event in February 2018 and its prediction by a climate system model,
J. Geophys. Res.-Atmos.,
123, 13–332, 2018. a
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.:
The 2019 New Year stratospheric sudden warming and its real-time predictions in multiple S2S models,
J. Geophys. Res.-Atmos.,
124, 11155–11174, 2019. a
Rao, J., Garfinkel, C. I., and White, I. P.:
Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models,
J. Geophys. Res.-Atmos.,
125, e2019JD031919, https://doi.org/10.1029/2019JD031919, 2020. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.:
MERRA: NASA's modern-era retrospective analysis for research and applications,
J. Climate,
24, 3624–3648, 2011. a
Rind, D., Donn, W. L., and Dede, E.:
Upper air wind speeds calculated from observations of natural infrasound,
J. Atmos. Sci.,
30, 1726–1729, 1973. a
Sabatini, R., Marsden, O., Bailly, C., and Gainville, O.:
Three-dimensional direct numerical simulation of infrasound propagation in the Earth's atmosphere,
J. Fluid Mech.,
859, 754–789, 2019. a
Saxer, L.:
Elektrische messung kleiner atmospharischer druckschwankungen,
Helv. Phys. Acta,
18, 527–550, 1945. a
Saxer, L.:
Über Entstehung und Ausbreitung quasiperiodischer Luftdruckschwankungen,
Arch. Meteor. Geophy. B,
6, 451–463, 1954. a
Schweitzer, J., Fyen, J., Mykkeltveit, S., Gibbons, S. J., Pirli, M., Kühn, D., and Kværna, T.:
Seismic arrays,
in: New manual of seismological observatory practice 2 (NMSOP-2),
Deutsches GeoForschungsZentrum GFZ, 1–80, 2012. a
Schweitzer, J., Köhler, A., and Christensen, J. M.:
Development of the NORSAR Network over the Last 50 Yr,
Seismol. Res. Lett.,
92, 1501–1511, https://doi.org/10.1785/0220200375, 2021. a
Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM, Ann. Geophys., 32, 589–608, https://doi.org/10.5194/angeo-32-589-2014, 2014. a
Smets, P., Assink, J., and Evers, L.:
The study of sudden stratospheric warmings using infrasound,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 723–755, 2019. a
Smets, P. S. M. and Evers, L. G.:
The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations,
J. Geophys. Res.-Atmos.,
119, 12084–12099, https://doi.org/10.1002/2014JD021905, 2014. a, b, c, d
Smirnov, A., De Carlo, M., Le Pichon, A., Shapiro, N. M., and Kulichkov, S.: Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network, Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, 2021. a, b, c
Smith, A. K.:
Global dynamics of the MLT,
Surv. Geophys.,
33, 1177–1230, 2012. a
The WAVEWATCH III ® Development Group:
User manual and system documentation of WAVEWATCH III ® version 5.16, Tech. Note 329, NOAA/NWS/NCEP/MMAB, 326 pp. + Appendices,
2016. a
Vera Rodriguez, I., Näsholm, S. P., and Le Pichon, A.:
Atmospheric wind and temperature profiles inversion using infrasound: An ensemble model context,
J. Acoust. Soc. Am.,
148, 2923–2934, 2020. a
Waxler, R., Gilbert, K. E., Talmadge, C., and Hetzer, C.:
The effects of the finite depth of the ocean on microbarom signals,
in: 8th International Conference on Theoretical and Computational Acoustics (ICTCA), Crete, Greece, 2007. a
Whitaker, R. W. and Mutschlecner, J. P.:
A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes,
J. Geophys. Res.-Atmos.,
113, D08117, https://doi.org/10.1029/2007JD008852, 2008. a
Xiong, J., Wan, W., Ding, F., Liu, L., Hu, L., and Yan, C.:
Two day wave traveling westward with wave number 1 during the sudden stratospheric warming in January 2017,
J. Geophys. Res.-Space,
123, 3005–3013, 2018. a
Zülicke, C., Becker, E., Matthias, V., Peters, D. H. W., Schmidt, H., Liu, H.-L., de la Torre Ramos, L., and Mitchell, D. M.:
Coupling of stratospheric warmings with mesospheric coolings in observations and simulations,
J. Climate,
31, 1107–1133, 2018. a
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Our approach compares infrasound data and simulated microbarom soundscapes in multiple...