Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-515-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-515-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benchmarking microbarom radiation and propagation model against infrasound recordings: a vespagram-based approach
Ekaterina Vorobeva
CORRESPONDING AUTHOR
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
NORSAR, Kjeller, Norway
Marine De Carlo
The French Alternative Energies and Atomic Energy Commission (CEA) – DAM, DIF, 91297 Arpajon, France
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, IRD, Ifremer, IUEM, Brest, France
Alexis Le Pichon
The French Alternative Energies and Atomic Energy Commission (CEA) – DAM, DIF, 91297 Arpajon, France
Patrick Joseph Espy
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
Sven Peter Näsholm
NORSAR, Kjeller, Norway
Department of Informatics, University of Oslo, Oslo, Norway
Related authors
Ekaterina Vorobeva
Ann. Geophys., 37, 375–380, https://doi.org/10.5194/angeo-37-375-2019, https://doi.org/10.5194/angeo-37-375-2019, 2019
Short summary
Short summary
We investigated the statistical relationship between solar activity and the occurrence rate of major sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm radio flux (F10.7) has been used as a proxy for solar activity. The calculations have been performed based on two datasets of central day (NCEP–NCAR-I and combined ERA) for the period from 1958 to 2013. The analysis revealed a positive correlation between MSSW events and solar activity.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data, 14, 4201–4230, https://doi.org/10.5194/essd-14-4201-2022, https://doi.org/10.5194/essd-14-4201-2022, 2022
Short summary
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Stefan Bender, Patrick J. Espy, and Larry J. Paxton
Ann. Geophys., 39, 899–910, https://doi.org/10.5194/angeo-39-899-2021, https://doi.org/10.5194/angeo-39-899-2021, 2021
Short summary
Short summary
The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. We have validated the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) products for average electron energy and electron energy flux by comparison to EISCAT electron density profiles. The good agreement shows that SSUSI far-UV observations can be used to provide ionization rate profiles throughout the auroral region.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Alexandr Smirnov, Marine De Carlo, Alexis Le Pichon, Nikolai M. Shapiro, and Sergey Kulichkov
Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, https://doi.org/10.5194/se-12-503-2021, 2021
Short summary
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Willem E. van Caspel, Patrick J. Espy, Robert E. Hibbins, and John P. McCormack
Ann. Geophys., 38, 1257–1265, https://doi.org/10.5194/angeo-38-1257-2020, https://doi.org/10.5194/angeo-38-1257-2020, 2020
Short summary
Short summary
Global-scale wind measurements from the upper regions of the atmosphere are used to isolate those atmospheric waves that follow the apparent motion of the sun over the course of a day. We present 16 years of near-continuous measurements, demonstrating the unique capabilities of the array of high-latitude SuperDARN radars. The validation steps outlined in our work also provide a methodology for future studies using wind measurements from the (expanding) network of SuperDARN radars.
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020, https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Christoph Pilger, Peter Gaebler, Lars Ceranna, Alexis Le Pichon, Julien Vergoz, Anna Perttu, Dorianne Tailpied, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 19, 2811–2825, https://doi.org/10.5194/nhess-19-2811-2019, https://doi.org/10.5194/nhess-19-2811-2019, 2019
Short summary
Short summary
This paper provides infrasound data analysis, modeling, and interpretation of the source characteristics of the 28 September 2018 magnitude 7.5 Sulawesi earthquake. Epicentral ground movement by the earthquake rupture as well as the secondary shaking of nearby mountainous topography is responsible for the strong infrasound generated. Findings allow one to improve knowledge of infrasonic and seismoacoustic source processes and the monitoring capabilities of the infrasound arrays used.
Ekaterina Vorobeva
Ann. Geophys., 37, 375–380, https://doi.org/10.5194/angeo-37-375-2019, https://doi.org/10.5194/angeo-37-375-2019, 2019
Short summary
Short summary
We investigated the statistical relationship between solar activity and the occurrence rate of major sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm radio flux (F10.7) has been used as a proxy for solar activity. The calculations have been performed based on two datasets of central day (NCEP–NCAR-I and combined ERA) for the period from 1958 to 2013. The analysis revealed a positive correlation between MSSW events and solar activity.
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019, https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Short summary
We present an empirical model for nitric oxide (NO) in the mesosphere (60–90 km) derived from SCIAMACHY limb scan data. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY as a function of geomagnetic latitude to the solar Lyman-alpha and the geomagnetic AE indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Christoph Franzen, Robert Edward Hibbins, Patrick Joseph Espy, and Anlaug Amanda Djupvik
Atmos. Meas. Tech., 10, 3093–3101, https://doi.org/10.5194/amt-10-3093-2017, https://doi.org/10.5194/amt-10-3093-2017, 2017
Short summary
Short summary
We discuss a technique to extract the hydroxyl (OH) airglow signal from routine astronomical spectroscopic observations from the Nordic Optical Telescope. Emission spectra from the vibrational manifold from v′ = 9 down to v′ = 3. The fitted rotational temperature distribution with v′ agrees with model conditions and the preponderance of previous work. We highlight the potential for archived and future observations with unprecedented spatial and temporal resolutions.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
N. H. Stray, Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins
Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, https://doi.org/10.5194/acp-15-4997-2015, 2015
Short summary
Short summary
Planetary wave activity measured in the mesosphere to lower thermosphere is shown to increase drastically after strong stratospheric polar cap wind reversals associated with sudden stratospheric warmings. In addition, a moderate but significant correlation was found between planetary wave enhancement in the mesosphere to lower thermosphere and all stratospheric polar cap wind reversals, irrespective of the strength of the reversal.
R. J. de Wit, R. E. Hibbins, P. J. Espy, and E. A. Hennum
Ann. Geophys., 33, 309–319, https://doi.org/10.5194/angeo-33-309-2015, https://doi.org/10.5194/angeo-33-309-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are a natural laboratory to study vertical and horizontal coupling throughout the whole atmosphere. This study presents MLS derived pole-to-pole temperature anomalies associated with the 2013 major SSW. The results provide observational evidence for interhemispheric coupling, and the wave-mean flow interactions thought to be responsible for the formation of temperature anomalies in the summer hemisphere.
T. D. Demissie, P. J. Espy, N. H. Kleinknecht, M. Hatlen, N. Kaifler, and G. Baumgarten
Atmos. Chem. Phys., 14, 12133–12142, https://doi.org/10.5194/acp-14-12133-2014, https://doi.org/10.5194/acp-14-12133-2014, 2014
Short summary
Short summary
Summertime gravity waves detected in noctilucent clouds (NLCs) between 64◦ and 74◦N are found to have a similar climatology to those observed between 60◦ and 64◦N, and their direction of propagation is to the north and northeast as observed south of 64◦N. However, a unique population of fast, short wavelength waves propagating towards the SW is observed in the NLC. The sources of the prominent wave structures observed in the NLC are likely to be from waves propagating from near the tropopause.
M. Daae, C. Straub, P. J. Espy, and D. A. Newnham
Earth Syst. Sci. Data, 6, 105–115, https://doi.org/10.5194/essd-6-105-2014, https://doi.org/10.5194/essd-6-105-2014, 2014
T. D. Demissie, N. H. Kleinknecht, R. E. Hibbins, P. J. Espy, and C. Straub
Ann. Geophys., 31, 1279–1284, https://doi.org/10.5194/angeo-31-1279-2013, https://doi.org/10.5194/angeo-31-1279-2013, 2013
C. Straub, P. J. Espy, R. E. Hibbins, and D. A. Newnham
Earth Syst. Sci. Data, 5, 199–208, https://doi.org/10.5194/essd-5-199-2013, https://doi.org/10.5194/essd-5-199-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Waves and tides
On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere
Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization and applications to the Earth and solar atmospheres
Kathrin Baumgarten and Gunter Stober
Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, https://doi.org/10.5194/angeo-37-581-2019, 2019
Short summary
Short summary
The paper presents the variability in thermal tides in the middle atmosphere from temperature observations as well as from horizontal wind data using a new diagnostic approach which takes into account a possible intermittency of tides. The data are analyzed from a local as well as from a global perspective to distinguish between different tidal modes. Surprisingly, there are dominating tidal modes, which are seen in the local data, and a phase relation between temperature and winds is evaluated.
Oleg K. Cheremnykh, Alla K. Fedorenko, Evgen I. Kryuchkov, and Yuriy A. Selivanov
Ann. Geophys., 37, 405–415, https://doi.org/10.5194/angeo-37-405-2019, https://doi.org/10.5194/angeo-37-405-2019, 2019
Short summary
Short summary
The fundamental mode of oscillations of the solar atmosphere, f-mode, plays an important role in solar physics. At an early stage of observation, it was found that its frequency is related to the wavelength by a ratio characteristic of waves on the surface of deep water. Subsequent observations revealed its inaccuracy. We derived waves with a different frequency–wavelength ratio and compared them with other possible waves of this type in both the solar and terrestrial atmosphere.
Cited articles
Amezcua, J., Näsholm, S. P., Blixt, E. M., and Charlton-Perez, A. J.:
Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds,
Q. J. Roy. Meteor. Soc.,
146, 2634–2653, https://doi.org/10.1002/qj.3809, 2020. a, b
Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A.:
Ocean wave sources of seismic noise,
J. Geophys. Res.-Oceans,
116, C09004, https://doi.org/10.1029/2011JC006952, 2011. a
Assink, J. D., Le Pichon, A., Blanc, E., Kallel, M., and Khemiri, L.:
Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound,
J. Geophys. Res.-Atmos.,
119, 8659–8683, 2014. a
Baird, H. F. and Banwell, C. J.:
Recording of air-pressure oscillations associated with microseisms at Christchurch,
NZJ Sci. Technol. Sect. B,
21, 314–329, 1940. a
Bishop, J. W., Fee, D., and Szuberla, C. A. L.:
Improved infrasound array processing with robust estimators,
Geophys. J. Int.,
221, 2058–2074, https://doi.org/10.1093/gji/ggaa110, 2020. a
Blanc, E., Ceranna, L., Hauchecorne, A., Charlton-Perez, A., Marchetti, E., Evers, L., Kvaerna, T., Lastovicka, J., Eliasson, L., Crosby, N., Blanc-Benon, P., Le Pichon, A., Brachet, N., Pilger, C., Keckhut, P., Assink, J., Smets, P. M., Lee, C., Kero, J., Sindelarova, T., Kämpfer, N., Rüfenacht, R., Farges, T., Millet, C., Näsholm, S. P., Gibbons, S., Espy, P., Hibbins, R., Heinrich, P., Ripepe, M., Khaykin, S., Mze, N., and Chum, J.:
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project,
Surv. Geophys.,
39, 171–225, https://doi.org/10.1007/s10712-017-9444-0, 2018. a, b
Blanc, E., Pol, K., Le Pichon, A., Hauchecorne, A., Keckhut, P., Baumgarten, G., Hildebrand, J., Höffner, J., Stober, G., Hibbins, R., Espy, P., Rapp, M., Kaifler, B., Ceranna, L., Hupe, P., Hagen, J., Rüfenacht, R., Kämpfer, N., and Smets, P.:
Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 845–887, 2019. a, b
Brekhovskikh, L.:
Propagation of acoustic and infrared waves in natural waveguides over long distances,
Sov. Phys. Uspekhi,
3, 159–166, https://doi.org/10.1070/pu1960v003n01abeh003263, 1960. a
Brekhovskikh, L. M., Goncharov, V. V., Kurtepov, V. M., and Naugolny, K. A.:
Radiation of infrasound into atmosphere by surface-waves in ocean,
Izv. An. SSSR Fiz. Atm+.,
9, 899–907, 1973. a
Brissaud, Q., Martin, R., Garcia, R. F., and Komatitsch, D.:
Hybrid Galerkin numerical modelling of elastodynamics and compressible Navier–Stokes couplings: applications to seismo-gravito acoustic waves,
Geophys. J. Int.,
210, 1047–1069, 2017. a
Büeler, D., Beerli, R., Wernli, H., and Grams, C. M.:
Stratospheric influence on ECMWF sub-seasonal forecast skill for energy–industry-relevant surface weather in European countries,
Q. J. Roy. Meteor. Soc.,
146, 3675–3694, 2020. a
Cansi, Y.:
An automatic seismic event processing for detection and location: The PMCC method,
Geophys. Res. Lett.,
22, 1021–1024, 1995. a
Capon, J.:
High-resolution frequency-wavenumber spectrum analysis,
P. IEEE,
57, 1408–1418, 1969. a
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Krüger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and Watanabe, S.:
On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models,
J. Geophys. Res.-Atmos.,
118, 2494–2505, 2013. a, b
Chunchuzov, I., Kulichkov, S., Perepelkin, V., Popov, O., Firstov, P., Assink, J. D., and Marchetti, E.:
Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere,
J. Geophys. Res.-Atmos.,
120, 8828–8840, 2015. a, b, c
Conte, J. F., Chau, J. L., and Peters, D. H. W.:
Middle-and High-Latitude Mesosphere and Lower Thermosphere Mean Winds and Tides in Response to Strong Polar-Night Jet Oscillations,
J. Geophys. Res.-Atmos.,
124, 9262–9276, 2019. a
Dahlman, O., Mykkeltveit, S., and Haak, H.:
Nuclear test ban: converting political visions to reality,
Springer Science & Business Media, 2009. a
De Carlo, M., Hupe, P., Le Pichon, A., Ceranna, L., and Ardhuin, F.:
Global Microbarom Patterns: A First Confirmation of the Theory for Source and Propagation,
Geophys. Res. Lett.,
48, e2020GL090 163, https://doi.org/10.1029/2020GL090163, 2021. a, b, c, d
de Groot-Hedlin, C. D., Hedlin, M. A., and Drob, D. P.:
Atmospheric variability and infrasound monitoring,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 475–507, 2010. a
den Ouden, O. F. C., Assink, J. D., Smets, P. S. M., Shani-Kadmiel, S., Averbuch, G., and Evers, L. G.:
CLEAN beamforming for the enhanced detection of multiple infrasonic sources,
Geophys. J. Int.,
221, 305–317, 2020. a
Dessauer, F., Graffunder, W., and Schaffhauser, J.:
Über atmosphärische Pulsationen, Archiv für Meteorologie,
Arch. Meteor. Geophy. B,
3, 453–463, 1951. a
Diamantakis, M.:
Improving ECMWF forecasts of sudden stratospheric warmings,
ECMWF Newsletter,
141, 30–36, 2014. a
Diamond, M.:
Sound channels in the atmosphere,
J. Geophys. Res.,
68, 3459–3464, 1963. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.:
The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere,
J. Geophys. Res.-Atmos.,
125, e2019JD030920, https://doi.org/10.1029/2019JD030920, 2020a. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.:
The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling,
J. Geophys. Res.-Atmos.,
125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020b. a
Donn, W. L. and Posmentier, E. S.:
Infrasonic waves from the marine storm of April 7, 1966,
J. Geophys. Res.,
72, 2053–2061, 1967. a
Donn, W. L. and Rind, D.:
Natural infrasound as an atmospheric probe,
Geophys. J. Int.,
26, 111–133, 1971. a
Dorrington, J., Finney, I., Palmer, T., and Weisheimer, A.:
Beyond skill scores: exploring sub-seasonal forecast value through a case study of French month-ahead energy prediction,
Q. J. Roy. Meteor. Soc.,
146, 3623–3637, 2020. a
Eswaraiah, S., Kumar, K. N., Kim, Y. H., Chalapathi, G. V., Lee, W., Jiang, G., Yan, C., Yang, G., Ratnam, M. V., Prasanth, P. V., Rao, S. V. B., and Thyagarajan, K.:
Low-latitude mesospheric signatures observed during the 2017 sudden stratospheric warming using the fuke meteor radar and ERA-5,
J. Atmos. Sol.-Terr. Phy.,
207, 105352, https://doi.org/10.1016/j.jastp.2020.105352, 2020. a
Evers, L. G. and Siegmund, P.:
Infrasonic signature of the 2009 major sudden stratospheric warming,
Geophys. Res. Lett.,
36, L23808, https://doi.org/10.1029/2009GL041323, 2009. a, b
Garcés, M., Hansen, R. A., and Lindquist, K. G.:
Traveltimes for infrasonic waves propagating in a stratified atmosphere,
Geophys. J. Int.,
135, 255–263, 1998. a
Garcés, M., Willis, M., Hetzer, C., Le Pichon, A., and Drob, D.:
On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere,
Geophys. Res. Lett.,
31, L19304, https://doi.org/10.1029/2004GL020696, 2004. a
Gibbons, S., Ringdal, F., and Kværna, T.:
Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions,
J. Acoust. Soc. Am.,
122, EL158–EL164, 2007. a
Gibbons, S., Asming, V., Eliasson, L., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S. P., Raita, T., Roth, M., Tiira, T., and Vinogradov, Y.:
The European Arctic: A Laboratory for Seismoacoustic Studies,
Seismol. Res. Lett.,
86, 917–928, https://doi.org/10.1785/0220140230, 2015. a
Gibbons, S., Kværna, T., and Näsholm, S. P.:
Characterization of the infrasonic wavefield from repeating seismo-acoustic events,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 387–407, 2019. a
Gibbons, S. J., Kværna, T., Tiira, T., and Kozlovskaya, E.:
A Benchmark Case Study for Seismic Event Relative Location,
Geophys. J. Int.,
223, 1313–1326, https://doi.org/10.1093/gji/ggaa362, 2020. a
Gutenberg, B. and Benioff, H.:
Atmospheric-pressure waves near Pasadena,
Eos T. Am. Geophys. Un.,
22, 424–426, 1941. a
Hasselmann, K.:
A statistical analysis of the generation of microseisms,
Rev. Geophys.,
1, 177–210, 1963. a
Hedlin, M., Walker, K., Drob, D., and de Groot-Hedlin, C.:
Infrasound: Connecting the solid earth, oceans, and atmosphere,
Annu. Rev. Earth Pl. Sc.,
40, 327–354, 2012. a
Hibbins, R., Espy, P., and de Wit, R.:
Gravity-Wave Detection in the Mesosphere Using Airglow Spectrometers and Meteor Radars,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 649–668, 2019. a
Hillers, G., Graham, N., Campillo, M., Kedar, S., Landès, M., and Shapiro, N.:
Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models,
Geochem. Geophy. Geosy.,
13, Q01021, https://doi.org/10.1029/2011GC003875, 2012. a
Högbom, J. A.:
Aperture synthesis with a non-regular distribution of interferometer baselines,
Astron. Astrophys. Supp.,
15, 417–426, 1974. a
Ingate, S. F., Husebye, E. S., and Christoffersson, A.:
Regional arrays and optimum data processing schemes,
B. Seismol. Soc. Am.,
75, 1155–1177, 1985. a
Kanasewich, E. R., Hemmings, C. D., and Alpaslan, T.:
Nth-root stack nonlinear multichannel filter,
Geophysics,
38, 327–338, 1973. a
Kim, K. and Rodgers, A.:
Influence of low-altitude meteorological conditions on local infrasound propagation investigated by 3-D full-waveform modeling,
Geophys. J. Int.,
210, 1252–1263, 2017. a
Landès, M., Le Pichon, A., Shapiro, N. M., Hillers, G., and Campillo, M.:
Explaining global patterns of microbarom observations with wave action models,
Geophys. J. Int.,
199, 1328–1337, 2014. a
Le Pichon, A., Ceranna, L., Garcés, M., Drob, D., and Millet, C.:
On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere,
J. Geophys. Res.-Atmos.,
111, D11106, https://doi.org/10.1029/2005JD006690, 2006. a
Le Pichon, A., Vergoz, J., Herry, P., and Ceranna, L.:
Analyzing the detection capability of infrasound arrays in Central Europe,
J. Geophys. Res.-Atmos.,
113, D12115, https://doi.org//10.1029/2007JD009509, 2008. a
Le Pichon, A., Ceranna, L., and Vergoz, J.:
Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network,
J. Geophys. Res.-Atmos.,
117, 1–12, https://doi.org/10.1029/2011JD016670, 2012. a, b, c, d
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A., Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer, N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O., and Claud, C.:
Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models,
J. Geophys. Res.-Atmos.,
120, 8318–8331, 2015. a
Le Pichon, A., Ceranna, L., Vergoz, J., and Tailpied, D.:
Modeling the detection capability of the global IMS infrasound network,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 593–604, 2019. a
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.:
On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause,
J. Geophys. Res.-Atmos.,
121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016. a
Lü, Z., Li, F., Orsolini, Y. J., Gao, Y., and He, S.:
Understanding of european cold extremes, sudden stratospheric warming, and siberian snow accumulation in the winter of 2017/18,
J. Climate,
33, 527–545, 2020. a
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, 2016. a, b
Manney, G. L., Lawrence, Z. D., Santee, M. L., Read, W. G., Livesey, N. J., Lambert, A., Froidevaux, L., Pumphrey, H. C., and Schwartz, M. J.:
A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter,
Geophys. Res. Lett.,
42, 7808–7816, 2015. a
Marty, J.:
The IMS infrasound network: current status and technological developments,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 3–62, 2019. a
McFadden, P. L., Drummond, B. J., and Kravis, S.:
The N th-root stack: Theory, applications, and examples,
Geophysics,
51, 1879–1892, 1986. a
Mikhailov, A.:
Turbo, An Improved Rainbow Colormap for Visualization,
available at: https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html (last access: 25 July 2020), 2019. a
Mitnik, L. M., Kuleshov, V. P., Pichugin, M. K., and Mitnik, M. L.:
Sudden Stratospheric Warming in 2015–2016: Study with Satellite Passive Microwave Data and ERA5 Reanalysis,
in: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium,
5556–5559, IEEE, 2018. a
Muirhead, K. J. and Datt, R.:
The N-th root process applied to seismic array data,
Geophys. J. Int.,
47, 197–210, 1976. a
Näsholm, S. P., Vorobeva, E., Le Pichon, A., Orsolini, Y. J., Turquet, A. L., Hibbins, R. E., Espy, P. J., De Carlo, M., Assink, J. D., and Rodriguez, I. V.:
Semidiurnal tidal signatures in microbarom infrasound array measurements,
in: EGU General Assembly Conference Abstracts, Online, 4–8 May 2020, EGU2020-19035, https://doi.org/10.5194/egusphere-egu2020-19035, 2020. a
Nippress, A., Green, D. N., Marcillo, O. E., and Arrowsmith, S. J.:
Generating regional infrasound celerity-range models using ground-truth information and the implications for event location,
Geophys. J. Int.,
197, 1154–1165, 2014. a
Orsolini, Y. J. and Sorteberg, A.:
Projected changes in Eurasian and Arctic summer cyclones under global warming in the Bergen climate model,
Atmospheric and Oceanic Science Letters,
2, 62–67, 2009. a
Petersson, N. A. and Sjögreen, B.:
High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography,
J. Sci. Comput.,
74, 290–323, 2018. a
Pilger, C., Ceranna, L., Ross, J. O., Vergoz, J., Le Pichon, A., Brachet, N., Blanc, E., Kero, J., Liszka, L., Gibbons, S., Kvaerna, T., Näsholm, S. P., Marchetti, E., Ripepe, M., Smets, P., Evers, L., Ghica, D., Ionescu, C., Sindelarova, T., Ben Horin, Y., and Mialle, P.:
The European Infrasound Bulletin,
Pure Appl. Geophys.,
175, 3619–3638, 2018. a
Pilger, C., Gaebler, P., Ceranna, L., Le Pichon, A., Vergoz, J., Perttu, A., Tailpied, D., and Taisne, B.: Infrasound and seismoacoustic signatures of the 28 September 2018 Sulawesi super-shear earthquake, Nat. Hazards Earth Syst. Sci., 19, 2811–2825, https://doi.org/10.5194/nhess-19-2811-2019, 2019. a
Polavarapu, S., Shepherd, T. G., Rochon, Y., and Ren, S.:
Some challenges of middle atmosphere data assimilation,
Q. J. Roy. Meteor. Soc.,
131, 3513–3527, 2005. a
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.:
The stratospheric sudden warming event in February 2018 and its prediction by a climate system model,
J. Geophys. Res.-Atmos.,
123, 13–332, 2018. a
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.:
The 2019 New Year stratospheric sudden warming and its real-time predictions in multiple S2S models,
J. Geophys. Res.-Atmos.,
124, 11155–11174, 2019. a
Rao, J., Garfinkel, C. I., and White, I. P.:
Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models,
J. Geophys. Res.-Atmos.,
125, e2019JD031919, https://doi.org/10.1029/2019JD031919, 2020. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.:
MERRA: NASA's modern-era retrospective analysis for research and applications,
J. Climate,
24, 3624–3648, 2011. a
Rind, D., Donn, W. L., and Dede, E.:
Upper air wind speeds calculated from observations of natural infrasound,
J. Atmos. Sci.,
30, 1726–1729, 1973. a
Sabatini, R., Marsden, O., Bailly, C., and Gainville, O.:
Three-dimensional direct numerical simulation of infrasound propagation in the Earth's atmosphere,
J. Fluid Mech.,
859, 754–789, 2019. a
Saxer, L.:
Elektrische messung kleiner atmospharischer druckschwankungen,
Helv. Phys. Acta,
18, 527–550, 1945. a
Saxer, L.:
Über Entstehung und Ausbreitung quasiperiodischer Luftdruckschwankungen,
Arch. Meteor. Geophy. B,
6, 451–463, 1954. a
Schweitzer, J., Fyen, J., Mykkeltveit, S., Gibbons, S. J., Pirli, M., Kühn, D., and Kværna, T.:
Seismic arrays,
in: New manual of seismological observatory practice 2 (NMSOP-2),
Deutsches GeoForschungsZentrum GFZ, 1–80, 2012. a
Schweitzer, J., Köhler, A., and Christensen, J. M.:
Development of the NORSAR Network over the Last 50 Yr,
Seismol. Res. Lett.,
92, 1501–1511, https://doi.org/10.1785/0220200375, 2021. a
Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM, Ann. Geophys., 32, 589–608, https://doi.org/10.5194/angeo-32-589-2014, 2014. a
Smets, P., Assink, J., and Evers, L.:
The study of sudden stratospheric warmings using infrasound,
in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A.,
Springer, 723–755, 2019. a
Smets, P. S. M. and Evers, L. G.:
The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations,
J. Geophys. Res.-Atmos.,
119, 12084–12099, https://doi.org/10.1002/2014JD021905, 2014. a, b, c, d
Smirnov, A., De Carlo, M., Le Pichon, A., Shapiro, N. M., and Kulichkov, S.: Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network, Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, 2021. a, b, c
Smith, A. K.:
Global dynamics of the MLT,
Surv. Geophys.,
33, 1177–1230, 2012. a
The WAVEWATCH III ® Development Group:
User manual and system documentation of WAVEWATCH III ® version 5.16, Tech. Note 329, NOAA/NWS/NCEP/MMAB, 326 pp. + Appendices,
2016. a
Vera Rodriguez, I., Näsholm, S. P., and Le Pichon, A.:
Atmospheric wind and temperature profiles inversion using infrasound: An ensemble model context,
J. Acoust. Soc. Am.,
148, 2923–2934, 2020. a
Waxler, R., Gilbert, K. E., Talmadge, C., and Hetzer, C.:
The effects of the finite depth of the ocean on microbarom signals,
in: 8th International Conference on Theoretical and Computational Acoustics (ICTCA), Crete, Greece, 2007. a
Whitaker, R. W. and Mutschlecner, J. P.:
A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes,
J. Geophys. Res.-Atmos.,
113, D08117, https://doi.org/10.1029/2007JD008852, 2008. a
Xiong, J., Wan, W., Ding, F., Liu, L., Hu, L., and Yan, C.:
Two day wave traveling westward with wave number 1 during the sudden stratospheric warming in January 2017,
J. Geophys. Res.-Space,
123, 3005–3013, 2018. a
Zülicke, C., Becker, E., Matthias, V., Peters, D. H. W., Schmidt, H., Liu, H.-L., de la Torre Ramos, L., and Mitchell, D. M.:
Coupling of stratospheric warmings with mesospheric coolings in observations and simulations,
J. Climate,
31, 1107–1133, 2018. a
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Our approach compares infrasound data and simulated microbarom soundscapes in multiple...