Articles | Volume 39, issue 1
https://doi.org/10.5194/angeo-39-31-2021
https://doi.org/10.5194/angeo-39-31-2021
Regular paper
 | 
14 Jan 2021
Regular paper |  | 14 Jan 2021

Testing the electrodynamic method to derive height-integrated ionospheric conductances

Daniel Weimer and Thom Edwards

Related authors

An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection
C. R. Clauer, H. Kim, K. Deshpande, Z. Xu, D. Weimer, S. Musko, G. Crowley, C. Fish, R. Nealy, T. E. Humphreys, J. A. Bhatti, and A. J. Ridley
Geosci. Instrum. Method. Data Syst., 3, 211–227, https://doi.org/10.5194/gi-3-211-2014,https://doi.org/10.5194/gi-3-211-2014, 2014

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Electric fields and currents
High-latitude crochet: solar-flare-induced magnetic disturbance independent from low-latitude crochet
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020,https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Induced currents due to 3D ground conductivity play a major role in the interpretation of geomagnetic variations
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020,https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Horizontal electric fields from flow of auroral O+(2P) ions at sub-second temporal resolution
Sam Tuttle, Betty Lanchester, Björn Gustavsson, Daniel Whiter, Nickolay Ivchenko, Robert Fear, and Mark Lester
Ann. Geophys., 38, 845–859, https://doi.org/10.5194/angeo-38-845-2020,https://doi.org/10.5194/angeo-38-845-2020, 2020
Short summary

Cited articles

Ahn, B.-H., Richmond, A. D., Kamide, Y., Kroehl, H. W., Emery, B. A., de la Beaujardiere, O., and Akasofu, S.-I.: An ionospheric conductance model based on ground magnetic disturbance data, J. Geophys. Res., 103, 14769–14780, https://doi.org/10.1029/97JA03088, 1998. a, b
Amm, O.: Direct determination of the local ionospheric Hall conductance distribution from two-dimensionalelectric and magnetic field data: Application of the method using models of typical ionospheric electrodynamic situations, J. Geophys. Res., 100, 21473–21488, https://doi.org/10.1029/95JA02213, 1995. a
Amm, O.: Ionospheric Elementary Current Systems in Spherical Coordinates and Their Application, J. Geomag. Geoelectr., 49, 947–955, https://doi.org/10.5636/jgg.49.947, 1997. a
Amm, O.: Method of characteristics in spherical geometry applied to a Harang-discontinuity situation, Ann. Geophys., 16, 413–424, https://doi.org/10.1007/s00585-998-0413-2, 1998. a
Amm, O.: The elementary current method for calculating ionospheric current systems from multisatellite and ground magnetometer data, J. Geophys. Res., 106, 24843–24856, https://doi.org/10.1029/2001JA900021, 2001. a, b, c, d, e
Download
Short summary
The electrical conductivity of the Earth's ionosphere is an important parameter in the study of the polar, auroral currents that produce magnetic disturbances on the ground. Yet the values of the conductances, and how they vary, are not known with great precision. In our study we tested a method for deriving the conductivity values that requires use of three empirical models for the electric fields above the ionosphere and the magnetic field perturbations both on the ground and in space.