Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation
from the ground to the ionosphere using spherical elementary currents
systems, Earth Planets Space, 51, 431–440,
https://doi.org/10.1186/BF03352247, 1999.
a,
b
Amm, O., Aruliah, A., Buchert, S. C., Fujii, R., Gjerloev, J. W., Ieda, A., Matsuo, T., Stolle, C., Vanhamäki, H., and Yoshikawa, A.: Towards understanding the electrodynamics of the 3-dimensional high-latitude ionosphere: present and future, Ann. Geophys., 26, 3913–3932,
https://doi.org/10.5194/angeo-26-3913-2008, 2008.
a
Amm, O., Vanhamäki, H., Kauristie, K., Stolle, C., Christiansen, F.,
Haagmans, R., Masson, A., Taylor, M. G. G. T., Floberghagen, R., and
Escoubet, C. P.: A method to derive maps of ionospheric conductances,
currents, and convection from the Swarm multisatellite mission, J. Geophys. Res.-Space, 120, 3263–3282,
https://doi.org/10.1002/2014JA020154, 2015.
a
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., and Stauning, P.: Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation, Ann. Geophys., 26, 671–687,
https://doi.org/10.5194/angeo-26-671-2008, 2008.
a,
b
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., and Dyrud, L. P.: Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary
Electrodynamics Response Experiment, Geophys. Res. Lett., 41,
3017–3025,
https://doi.org/10.1002/2014GL059941, 2014.
a
Backus, G.: Poloidal and toroidal fields in geomagnetic field modeling, Rev.
Geophys., 24, 75–109, 1986.
a,
b,
c,
d
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., and Huang, X.: International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 15, 418–429,
https://doi.org/10.1002/2016SW001593, 2017.
a
Billett, D. D., Grocott, A., Wild, J. A., Walach, M.-T., and Kosch, M. J.:
Diurnal Variations in Global Joule Heating Morphology and Magnitude Due To
Neutral Winds, J. Geophys. Res.-Space, 123, 2398–2411,
https://doi.org/10.1002/2017JA025141, 2018.
a
Brekke, A. and Moen, J.: Observations of high latitude ionospheric
conductances, J. Atmos. Sol.-Terr. Phys., 55, 1493–1512, 1993. a
Burchill, J. and Knudsen, D.: EFI TII Cross-Track Flow Data, Doc. no: SW-RN-UoC-GS-004, Rev: 7, available at:
https://swarm-diss.eo.esa.int/#swarm/Advanced/Plasma_Data/2Hz_TII_Cross-track_Dataset
(last access: 22 August 2018), 18 September 2020. a
Burkholder, B. L., Nykyri, K., and Ma, X.: Use of the L1 Constellation as a
Multispacecraft Solar Wind Monitor, J. Geophys. Res.-Space Physics, 125, e2020JA027978,
https://doi.org/10.1029/2020JA027978, 2020.
a
Carter, J. A., Milan, S. E., Paxton, L. J., Anderson, B. J., and Gjerloev, J.: Height-Integrated Ionospheric Conductances Parameterized By Interplanetary Magnetic Field and Substorm Phase, J. Geophys. Res.-Space, 125, e2020JA028121,
https://doi.org/10.1029/2020JA028121, 2020.
a
Chapman, S. and Bartels, J.: Geomagnetism, Vol. II, Analysis of the data,
and physical theories, Oxford University Press, London, 1940.
a,
b
Coplan, M. A., Ogilvie, K. W., Bochsler, P. A., and Geiss, J.: Ion composition experiment, IEEE Trans. Geosci. Electron., 16, 185–191,
https://doi.org/10.1109/TGE.1978.294543, 1978.
a
Cousins, E. D. P. and Shepherd, S. G.: A dynamical model of high-latitude
convection derived from SuperDARN plasma drift measurements, J.
Geophys. Res.-Space, 115, a12329,
https://doi.org/10.1029/2010JA016017, 2010.
a
Edwards, T. R.: A New Suite of Ionospheric Electrodynamics Models, Phd thesis, Virginia Polytechnic Institute and State University, USA, 2019.
a,
b,
c
Edwards, T. R., Weimer, D. R., Tobiska, W. K., and Olsen, N.: Field-Aligned
Current Response to Solar Indices, J. Geophys. Res.-Space, 122,
5798–5815,
https://doi.org/10.1002/2016JA023563, 2017.
a
Edwards, T. R., Weimer, D. R., Olsen, N., Lühr, H., Tobiska, W. K., and
Anderson, B. J.: A Third Generation Field-Aligned Current Model, J. Geophys. Res.-Space, 125, 2019JA027249,
https://doi.org/10.1029/2019JA027249, 2020.
a,
b,
c,
d,
e,
f
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr, M.,
Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B.,
Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas,
F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities, Earth Space Sci., 7, e2020EA001321,
https://doi.org/10.1029/2020EA001321, 2020.
a
Frandsen, A. M. A., Connor, B. V., Amersfoort, J. V., and Smith, E. J.: ISEE-C vector helium magnetometer, IEEE Trans. Geosci. Electron., 16, 195–198,
https://doi.org/10.1109/TGE.1978.294545, 1978.
a
Fuller-Rowell, T. J. and Evans, D. S.: Height-Integrated Pedersen and Hall Conductivity Patterns Inferred From the TIROS-NOAA Satellite Data, J.
Geophys. Res., 92, 7606–7618, 1987.
a,
b
Galand, M. and Richmond, A.: Ionospheric electrical conductances produced by
auroral proton precipitation, J. Geophys. Res., 106, 117–125, 2001. a
Green, D. L., Waters, C. L., Korth, H., Anderson, B. J., Ridley, A. J., and
Barnes, R. J.: Technique: Large-scale ionospheric conductance estimated
from combined satellite and ground-based electromagnetic data, J. Geophys.
Res., 112, 2006JA012069,
https://doi.org/10.1029/2006JA012069, 2007.
a,
b,
c,
d,
e
Haaland, S. E., Paschmann, G., Förster, M., Quinn, J. M., Torbert, R. B., McIlwain, C. E., Vaith, H., Puhl-Quinn, P. A., and Kletzing, C. A.: High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence, Ann. Geophys., 25, 239–253,
https://doi.org/10.5194/angeo-25-239-2007, 2007.
a
Hardy, D. A., Gussenhoven, M. S., Raistrick, R., and McNeil, W. J.: Statistical and functional representations of the patterns of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12275–12294, 1987.
a,
b,
c,
d
Hedin, A. E.: Extension of the MSIS Thermosphere Model into the Middle and
Lower Atmosphere, J. Geophys. Res., 96, 1159–1172, 1991. a
Kamide, Y., Richmond, A. D., and Matsushita, S.: Estimation of ionospheric
electric fields, ionospheric currents, and field-aligned currents from ground magnetic records, J. Geophys. Res., 86, 801–813,
https://doi.org/10.1029/JA086iA02p00801, 1981.
a,
b
Kelley, M. C., Knudsen, D. J., and Vickrey, J. F.: Poynting flux measurements
on a satellite: A diagnostic tool for space research, J. Geophys. Res.- Space, 96, 201–207,
https://doi.org/10.1029/90JA01837, 1991.
a,
b
Laundal, K. M., Finlay, C. C., Olsen, N., and Reistad, J. P.: Solar wind and
seasonal influence on ionospheric currents from Swarm and CHAMP
measurements, J. Geophys. Res.-Space, 123, 4402–429,
https://doi.org/10.1029/2018JA025387, 2018.
a,
b
Lomidze, L., Burchill, J. K., Knudsen, D. J., Kouznetsov, A., and Weimer,
D. R.: Validity Study of the Swarm Horizontal Cross-Track Ion Drift
Velocities in the High-Latitude Ionosphere, Earth Space Sci., 6,
411–432,
https://doi.org/10.1029/2018EA000546, 2019.
a,
b
Marghitu, O., Karlsson, T., Klecker, B., Haerendel, G., and McFadden, J.:
Auroral arc and oval electrodynamics in the Harang region, J.
Geophys. Res.-Space, 114, 2008JA013630,
https://doi.org/10.1029/2008JA013630, 2009.
a,
b
McComas, D. J., Bame, S. J., Barber, P., Feldman, W. C., Phillips, J. L., and Riley, P.: Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, in: The Advanced Composition Explorer Mission, edited by: Russell, C. T., Mewaldt, R. A., and Von Rosenvinge, T. T., Springer, Dordrecht,
https://doi.org/10.1007/978-94-011-4762-0_20, 1998.
a
Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty,
S., and Anderson, B. J.: Conductance Model for Extreme Events: Impact of
Auroral Conductance on Space Weather Forecasts, Space Weather,
Space Weather, 18, e2020SW002551,
https://doi.org/10.1029/2020SW002551, 2020.
a,
b
Nakamizo, A. and Yoshikawa, A.: Deformation of Ionospheric Potential Pattern by Ionospheric Hall Polarization, J. Geophys. Res.-Space, 124, 7553–7580,
https://doi.org/10.1029/2018JA026013, 2019.
a
NASA: Magnetic Field Experiment, available at:
https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1973-078A-01, last access: December 2006a. a
NASA: Solar Plasma Faraday Cup, available at:
https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1973-078A-02, last access: December 2006b. a
Ohtani, S., Gjerloev, J. W., Johnsen, M. G., Yamauchi, M., Brändström,
U., and Lewis, A. M.: Solar Illumination Dependence of the Auroral Electrojet
Intensity: Interplay Between the Solar Zenith Angle and Dipole Tilt, J. Geophys. Res.-Space, 124, 6636–6653,
https://doi.org/10.1029/2019JA026707, 2019.
a
Papitashvili, V. O. and Rich, F. J.: High-latitude ionospheric convection
models derived from Defense Meteorological Satellite Program ion drift
observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res.-Space, 107,
https://doi.org/10.1029/2001JA000264, 2002.
a
Papitashvili, V. O., Christiansen, F., and Neubert, T.: A new model of
field-aligned currents derived from high-precision satellite magnetic field
data, Geophys. Res. Lett., 29, 2001GL014207,
https://doi.org/10.1029/2001GL014207, 2002.
a
Picone, J., Hedin, A., Drob, D., and Aikin, A.: NRLMSISE-00 empirical model
of the atmosphere: Statistical comparisons and scientific issues, J.
Geophys. Res., 107, 2002JA009430,
https://doi.org/10.1029/2002JA009430, 2002.
a
Prölss, G. W. and Bird, M. K.: Physics of the Earth's Space Environment: an introduction, Springer-Verlag, Berlin, Heidelberg, ISBN 3-540-21426-7, 2004. a
Rees, M. H.: Physics and Chemistry of the Upper Atmosphere, Cambridge University Press, New York, 1989. a
Richmond, A. D.: Ionospheric electrodynamics, in: Handbook of Atmospheric
Electrodynamics, vol. 2, edited by: Volland, H., CRC Press, Boca
Raton, 249–290, 1995b. a
Richmond, A. D. and Kamide, Y.: Mapping electrodynamic features of the
high-latitude ionosphere from localized observations: technique, J. Geophys. Res., 93, 5741–5759,
https://doi.org/10.1029/JA093iA06p05741, 1988.
a,
b
Ridley, A. J., Gombosi, T. I., and DeZeeuw, D. L.: Ionospheric control of the magnetosphere: conductance, Ann. Geophys., 22, 567–584,
https://doi.org/10.5194/angeo-22-567-2004, 2004.
a
Robinson, R. M., Vondrak, R. R., Miller, K., Babbs, T., and Hardy, D.: On
calculating ionospheric conductances from the flux and energy of
precipitating electrons, J. Geophys. Res., 92, 2565–2569, 1987. a
Ruohoniemi, J. M. and Greenwald, R. A.: Statistical patterns of high-latitude
convection obtained from Goose Bay HF radar observations, J. Geophys.
Res., 101, 21743–21763,
https://doi.org/10.1029/96JA01584, 1996.
a,
b
Ruohoniemi, J. M. and Greenwald, R. A.: Depenencies of highlatitude plasma
convection: Consideration of interplanetary magnetic field, seasonal, and
universal time factors in statistical patterns, J. Geophys. Res., 110, 2004JA010815,
https://doi.org/10.1029/2004JA010815, 2005.
a,
b
Shue, J.-H. and Weimer, D. R.: The relationship between ionospheric convection and magnetic activity, J. Geophys. Res.-Space, 99, 401–415,
https://doi.org/10.1029/93JA01946, 1994.
a
Smith, C. W., L'Heureux, J., Ness, N. F., Acuna, M. H., Burlaga, L. F., and Scheifele, J.: The Ace Magnetic Fields Experiment, in: The Advanced Composition Explorer Mission, edited by: Russell, C. T., Mewaldt, R. A., and Von Rosenvinge, T. T., Springer, Dordrecht,
https://doi.org/10.1007/978-94-011-4762-0_21, 1998.
a
Thayer, J. P.: Height-resolved Joule heating rates in the high-latitude E
region and the influence of neutral winds, J. Geophys. Res.-Space, 103, 471–487,
https://doi.org/10.1029/97JA02536, 1998.
a,
b
Vanhamäki, H., Yoshikawa, A., Amm, O., and Fujii, R.: Ionospheric Joule
heating and Poynting flux in quasi-static approximation, J. Geophys. Res.-Space, 117, 2012JA017841,
https://doi.org/10.1029/2012JA017841, 2012.
a,
b,
c,
d
VanZandt, T. E., Clark, W. L., and Warnock, J. M.: Magnetic Apex Coordinates: A magnetic coordinate system for the ionospheric
F2 layer, J. Geophys. Res., 77, 2406,
https://doi.org/10.1029/JA077i013p02406, 1972.
a
Weimer, D.: Models of high-latitude electric potentials derived with a least
error fit of spherical harmonic coefficients, J. Geophys. Res., 100, 19595,
https://doi.org/10.1029/95JA01755, 1995.
a
Weimer, D.: Maps of field-aligned currents as a function of the interplanetary magnetic field derived from Dynamic Explorer 2 data, J. Geophys. Res., 106, 12889,
https://doi.org/10.1029/2000JA000295, 2001.
a
Weimer, D. R.: Derivation of hemispheric ionospheric current functions from
ground-level magnetic fields, J. Geophys. Res.-Space, 124, 2018JA026191,
https://doi.org/10.1029/2018JA026191, 2019.
a,
b
Weimer, D. and Edwards, T.: Supporting Information and data archive for “Testing the Electrodynamic Method to Derive Height-Integrated Ionospheric Conductances”, [Data set], Zenodo,
https://doi.org/10.5281/zenodo.3985988, 2020.
a
Weimer, D. R. and King, J. H.: Improved calculations of interplanetary magnetic field phase front angles and propagation time delays, J. Geophys. Res., 113, A01105,
https://doi.org/10.1029/2007JA012452, 2008.
a,
b
Weimer, D. R., Ober, D. M., Maynard, N. C., Burke, W. J., Collier, M. R.,
McComas, D. J., Nagai, T., and Smith, C. W.: Variable time delays in the
propagation of the interplanetary magnetic field, J. Geophys. Res., 107,
https://doi.org/10.1029/2001JA009102, 2002.
a,
b
Weimer, D. R., Clauer, C. R., Engebretson, M. J., Hansen, T. L., Gleisner, H., Mann, I., and Yumoto, K.: Statistical Maps of Geomagnetic Perturbations as a Function of the Interplanetary Magnetic Field, J. Geophys. Res., 115, A10320,
https://doi.org/10.1029/2010JA015540, 2010.
a,
b,
c,
d
Wiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., and
Goodrich, C. C.: Initial results from the coupled magnetosphere ionosphere
thermosphere model: Magnetospheric and ionospheric responses, J. Atmos.
Sol.-Terr. Phys., 66, 1364–6826,
https://doi.org/10.1016/j.jastp.2004.03.026, 2004.
a
Yamazaki, Y. and Maute, A.: Sq and EEJ–A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents, Space Sci.
Rev., 206,
https://doi.org/10.1007/s11214-016-0282-z, 2017. Please add page range or article number.
a