Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-775-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-775-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ionospheric Pc1 waves during a storm recovery phase observed by the China Seismo-Electromagnetic Satellite
Xiaochen Gou
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Joint Research and Development Center of the Chinese Science Academy and Shen County, Shandong, China
Lei Li
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Joint Research and Development Center of the Chinese Science Academy and Shen County, Shandong, China
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Joint Research and Development Center of the Chinese Science Academy and Shen County, Shandong, China
Bin Zhou
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Joint Research and Development Center of the Chinese Science Academy and Shen County, Shandong, China
Yongyong Feng
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Joint Research and Development Center of the Chinese Science Academy and Shen County, Shandong, China
Bingjun Cheng
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Joint Research and Development Center of the Chinese Science Academy and Shen County, Shandong, China
Tero Raita
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Ji Liu
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
Zeren Zhima
Institute of Crustal Dynamics, China Earthquake Administration, Beijing, China
Xuhui Shen
Institute of Crustal Dynamics, China Earthquake Administration, Beijing, China
Related authors
No articles found.
Shican Qiu, Zhe Wang, Gaopeng Lu, Zeren Zhima, Willie Soon, Victor Manuel Velasco Herrera, and Peng Ju
Atmos. Chem. Phys., 24, 8519–8527, https://doi.org/10.5194/acp-24-8519-2024, https://doi.org/10.5194/acp-24-8519-2024, 2024
Short summary
Short summary
We focus on the interactions among TLEs, lightning, and the ionospheric electric field. The SNR of the Schumann resonance at the first and second modes dropped during the TLEs. A significant enhancement of the energy in ULF occurred. Distinct lightning whistler waves were found in the VLF band. Our results indicate that the observations of electric fields from the satellite could possibly be utilized to monitor lower-atmospheric lightning and its impact on the space environment.
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Shufan Zhao, XuHui Shen, Zeren Zhima, and Chen Zhou
Ann. Geophys., 38, 969–981, https://doi.org/10.5194/angeo-38-969-2020, https://doi.org/10.5194/angeo-38-969-2020, 2020
Short summary
Short summary
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu earthquake by analyzing the signal-to-noise ratio (SNR) and using the full-wave model to illustrate a possible mechanism for how the anomalies occurred. The results show that very low-frequency (VLF) radio wave SNR in the ionosphere decreased before the Yushu earthquake. The full-wave simulation results confirm that electron density variation in the lower ionosphere will affect VLF radio signal SNR.
Andreas Pollinger, Christoph Amtmann, Alexander Betzler, Bingjun Cheng, Michaela Ellmeier, Christian Hagen, Irmgard Jernej, Roland Lammegger, Bin Zhou, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 9, 275–291, https://doi.org/10.5194/gi-9-275-2020, https://doi.org/10.5194/gi-9-275-2020, 2020
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Kirsti Kauristie, Minna Myllys, Noora Partamies, Ari Viljanen, Pyry Peitso, Liisa Juusola, Shabana Ahmadzai, Vikramjit Singh, Ralf Keil, Unai Martinez, Alexej Luginin, Alexi Glover, Vicente Navarro, and Tero Raita
Geosci. Instrum. Method. Data Syst., 5, 253–262, https://doi.org/10.5194/gi-5-253-2016, https://doi.org/10.5194/gi-5-253-2016, 2016
Short summary
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
X. H. Shen, X. Zhang, J. Liu, S. F. Zhao, and G. P. Yuan
Ann. Geophys., 33, 471–479, https://doi.org/10.5194/angeo-33-471-2015, https://doi.org/10.5194/angeo-33-471-2015, 2015
Short summary
Short summary
This paper addresses the background of electron density (Ne) and temperature (Te and their relationship during local nighttime based on DEMETER satellite data. It also discusses the enhanced negative correlation of Ne and Te around strong earthquakes and the possible electric-field-coupling mechanism as well as digital calculation.
K. Qin, L. X. Wu, X. Y. Ouyang, X. H. Shen, and S. Zheng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2439-2013, https://doi.org/10.5194/nhessd-1-2439-2013, 2013
Revised manuscript has not been submitted
X. Zhang, C. Fidani, J. Huang, X. Shen, Z. Zeren, and J. Qian
Nat. Hazards Earth Syst. Sci., 13, 197–209, https://doi.org/10.5194/nhess-13-197-2013, https://doi.org/10.5194/nhess-13-197-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Electromagnetic wave propagation
Finite-difference time-domain analysis of ELF radio wave propagation in the spherical Earth–ionosphere waveguide and its validation based on analytical solutions
Volodymyr Marchenko, Andrzej Kulak, and Janusz Mlynarczyk
Ann. Geophys., 40, 395–406, https://doi.org/10.5194/angeo-40-395-2022, https://doi.org/10.5194/angeo-40-395-2022, 2022
Short summary
Short summary
We developed a new approach for validation of the numerical models of electromagnetic wave propagation in the Earth–ionosphere waveguide. We compared the parameters of the waveguide (i.e., characteristic electric and magnetic altitudes, resonance frequencies, phase velocity, and attenuation rate) obtained from numerical models with correspondent analytical calculations. We tested such validation for various conductivity profiles and found good agreement between analytical and numerical results.
Cited articles
Anderson, B. J. and Hamilton, D. C.: Electromagnetic ion cyclotron waves
stimulated by modest magnetospheric compressions, J. Geophys.
Res., 98, 11369, https://doi.org/10.1029/93ja00605, 1993.
Anderson, B. J., Denton, R. E., Ho, G., Hamilton, D. C., Fuselier, S. A.,
and Strangeway, R. J.: Observational test of local proton cyclotron
instability in the Earth's magnetosphere, J. Geophys. Res.-Space, 101, 21527–21543, https://doi.org/10.1029/96ja01251,
1996.
Bandić, M., Verbanac, G., and Pierrard, V.: Relationship between global
plasmapause characteristics and plasmapause structures in the frame of
interchange instability mechanism, J. Geophys. Res.-Space, 125, e2019JA026768, https://doi.org/10.1029/2019ja026768, 2019.
Bortnik, J., Cutler, J. W., Dunson, C., Bleier, T. E., and McPherron, R.
L.: Characteristics of low-latitude Pc1 pulsations during geomagnetic
storms, J. Geophys. Res.-Space, 113, A04201,
https://doi.org/10.1029/2007ja012867, 2008.
Bossen, M., McPherron, R. L., and Russell, C. T.: A statistical study of Pc
1 magnetic pulsations at synchronous orbit, J. Geophys. Res.,
81, 6083–6091, https://doi.org/10.1029/ja081i034p06083, 1976.
Carpenter, D. L. and Anderson, R. R.: An ISEE/whistler model of equatorial
electron density in the magnetosphere, J. Geophys. Res.,
97, 1097, https://doi.org/10.1029/91ja01548, 1992.
CSES: CSES data, available at: http://www.leos.ac.cn, last access: 9 June 2020.
Cornwall, J. M.: Cyclotron instabilities and electromagnetic emission in the
ultralow frequency and very low frequency ranges, J. Geophys.
Res., 70, 61–69, https://doi.org/10.1029/jz070i001p00061, 1965.
Cornwall, J. M., Coroniti, F. V., and Thorne, R. M.: Turbulent loss of ring
current protons, J. Geophys. Res., 75, 4699–4709,
https://doi.org/10.1029/JA075i025p04699,1970.
Denton, R. E.: Electromagnetic Ion Cyclotron Wave fields in a Realistic
Dipole Field, J. Geophys. Res.-Space, 123,
1208–1223, https://doi.org/10.1002/2017ja024886, 2018.
Engebretson, M. J., Posch, J. L., Westerman, A. M., Otto, N. J., Slavin, J.
A., Le, G., Strangeway, R. J., and Lessard, M. R.: Temporal and spatial
characteristics of Pc1 waves observed by ST5, J. Geophys.
Res.-Space, 113, A07206, https://doi.org/10.1029/2008ja013145,
2008.
Erlandson, R. E. and Ukhorskiy, A. J.: Observations of electromagnetic ion cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle scattering, J. Geophys. Res.-Space, 106, 3883–3895, https://doi.org/10.1029/2000ja000083, 2001.
Erlandson, R. E., Zanetti, L. J., Potemra, T. A., Block, L. P., and Holmgren, G.: Viking magnetic and electric field observations of Pc 1 waves at high latitudes, J. Geophys. Res., 95, 5941, https://doi.org/10.1029/ja095ia05p05941, 1990.
Erlandson, R. E., Aggson, T. L., Hogey, W. R., and Slavin, J. A.:
Simultaneous observations of subauroral electron temperature enhancements
and electromagnetic ion cyclotron waves, Geophys. Res. Lett.,
20, 1723–1726, https://doi.org/10.1029/93gl01975, 1993.
Fraser, B. J.: Polarization of Pc1 pulsations at high and middle latitudes,
J. Geophys. Res., 80, 2797–2807,
https://doi.org/10.1029/ja080i019p02797, 1975a.
Fraser, B. J.: Ionospheric duct propagation and Pc1 pulsation sources,
J. Geophys. Res., 80, 2790–2796,
https://doi.org/10.1029/ja080i019p02790, 1975b.
Friis-Christensen, E., Lühr, H., and Hulot, G.: Swarm: A constellation to
study the Earth's magnetic field, Earth Planets Space, 58, 351–358,
https://doi.org/10.1186/BF03351933, 2006.
Fujita, S. and Tamao, T.: Duct propagation of hydromagnetic waves in the
upper ionosphere, 1, Electromagnetic field disturbances in high latitudes
associated with localized incidence of a shear Alfvén wave, J. Geophys. Res., 93, 14665,
https://doi.org/10.1029/ja093ia12p14665, 1988.
Hayashi, K., Kokubun, S., Oguti, T., Tsuruda, K., Machida, S., Kitamura, T.,
Saka, O., and Watanabe, T.: The extent of Pc 1 source region in high latitudes,
Can. J. Phys., 59, 1097–1105,
https://doi.org/10.1139/p81-145, 1981.
Horne, R. B. and Thorne, R. M.: On the preferred source location for the
convective amplification of ion cyclotron waves, J. Geophys.
Res., 98, 9233, https://doi.org/10.1029/92ja02972, 1993.
Huang, J., Lei, J., Li, S., Zeren, Z., Li, C., Zhu, X., and Yu, W.: The Electric
Field Detector (EFD) onboard the ZH-1 satellite and first observational
results, Earth Planetary Phys., 2, 469–478,
https://doi.org/10.26464/epp2018045, 2018.
Iyemori, T. and Hayashi, K.: PC 1 micropulsations observed by Magsat in the
ionospheric F region, J. Geophys. Res., 94, 93,
https://doi.org/10.1029/ja094ia01p00093, 1989.
Jacobs, J. A. Watanabe, T.: Micropulsation whistlers, J. Atmos.
Terr. Phys., 26, 825–829,
https://doi.org/10.1016/0021-9169(64)90180-1, 1964.
Johnson, J. R. and Cheng, C. Z.: Can Ion Cyclotron Waves Propagate to the
Ground?, Geophys. Res. Lett., 26, 671–674,
https://doi.org/10.1029/1999gl900074, 1999.
Kim, E.-H. and Johnson, J. R.: Full-wave modeling of EMIC waves near the
He+ gyrofrequency, Geophys. Res. Lett., 43, 13–21,
https://doi.org/10.1002/2015gl066978, 2016.
Kim, H., Lessard, M. R., Engebretson, M. J., and Lühr, H.: Ducting
characteristics of Pc 1 waves at high latitudes on the ground and in space,
J. Geophys. Res.-Space, 115, A09310,
https://doi.org/10.1029/2010ja015323, 2010.
Kim, H., Hwang, J., Park, J., Bortnik, J., and Lee, J.: Global characteristics
of electromagnetic ion cyclotron waves deduced from Swarm satellites,
J. Geophys. Res.-Space, 123, 1325–1336,
https://doi.org/10.1002/2017JA024888, 2018.
Lin, R. L., Zhang, J. C., Allen, R. C., Kistler, L. M., Mouikis, C. G.,
Gong, J. C., Liu, L. Q., Klecker, B., Sauvaud, J. A., and Dunlop, M. W.: Testing
linear theory of EMIC waves in the inner magnetosphere: Cluster
observations, J. Geophys. Res.-Space, 119,
1004–1027, https://doi.org/10.1002/2013ja019541, 2014.
Loto'aniu, T. M.: Propagation of electromagnetic ion cyclotron wave energy
in the magnetosphere, J. Geophys. Res., 110, A07214,
https://doi.org/10.1029/2004ja010816, 2005.
Lysak, R. L: Propagation of Alfven waves through the ionosphere: Dependence
on ionospheric parameters, J. Geophys. Res., 104, 10017,
https://doi.org/10.1029/1999JA900024, 1999.
McCollough, J. P., Elkington, S. R., Usanova, M. E., Mann, I. R., Baker, D.
N., and Kale, Z. C.: Physical mechanisms of compressional EMIC wave growth,
J. Geophys. Res.-Space, 115, A10214,
https://doi.org/10.1029/2010ja015393, 2010.
Means, J. D.: Use of the three-dimensional covariance matrix in analyzing
the polarization properties of plane waves, J. Geophys. Res.,
77, 5551–5559, https://doi.org/10.1029/ja077i028p05551, 1972.
Merayo, J. M. G.: The Swarm Vector Field Magnetometer (VFM): instrument
commissioning & performance assessment, 3rd Swarm Science Meeting, 19–20 June 2014,
Copenhagen, Denmark, 2014.
NASA CCMC: Plasmapause simulation data, available at: https://ccmc.gsfc.nasa.gov/, last access: 9 June 2020.
NASA Goddard Space Flight Center: Coordinated Data Analysis Web (CDAWeb), available at: https://cdaweb.sci.gsfc.nasa.gov/index.html/, last access: 9 June 2020.
Olson, J. V. and Lee, L. C.: Pc1 wave generation by sudden impulses,
Planet. Space Sci., 31, 295–302,
https://doi.org/10.1016/0032-0633(83)90079-x, 1983.
Park, J., Lühr, H., and Rauberg, J.: Global characteristics of Pc1 magnetic pulsations during solar cycle 23 deduced from CHAMP data, Ann. Geophys., 31, 1507–1520, https://doi.org/10.5194/angeo-31-1507-2013, 2013.
Pierrard, V. and Lemaire, J. F.: Development of shoulders and plumes in the frame of the interchange instability mechanism for plasmapause formation, Geophys. Res. Lett., 31, L05809, https://doi.org/10.1029/2003gl018919, 2004.
Pierrard, V. and Stegen, K.: A three-dimensional dynamic kinetic model of the
plasmasphere, J. Geophys. Res., 113, A10209,
https://doi.org/10.1029/2008JA013060, 2008.
Píša, D., Parrot, M., Santolík, O., and Menietti, J. D.: EMIC
waves observed by the low-altitude satellite DEMETER during the November
2004 magnetic storm, J. Geophys. Res.-Space, 120, 5455–5464,
https://doi.org/10.1002/2014JA020233, 2015.
Russell, C. T. and Thorne, R. M.: on the structure of the inner
magnetosphere, Cosmic Electrodynamics, 1, 67–89, 1970.
Sonnerup, B. U. O. and Scheible, M.: Minimum and maximum variance
analysis, Chap. 1, in: Analysis methods
for multi-spacecraft data, edited by: Paschmann, G. and Daly, P. W., No. SR-001 in ISSI Scientific Reports,
185–220, ESA Publications Division, Noordwijk, the Netherlands, 1998.
SWARM: Earth Online, available at: https://earth.esa.int/, last access: 9 June 2020.
Usanova, M. E., Mann, I. R., Bortnik, J., Shao, L., and Angelopoulos, V.: THEMIS
observations of electromagnetic ion cyclotron wave occurrence: Dependence on
AE, SYMH, and solar wind dynamic pressure, J. Geophys. Res.-Space, 117, A10218, https://doi.org/10.1029/2012ja018049, 2012.
Verbanac, G., Bandić, M., Pierrard, V., and Cho, J.: MLT Plasmapause
Characteristics: Comparison Between THEMIS Observations and Numerical
Simulations, J. Geophy. Res.-Space, 123, 2000–2017,
https://doi.org/10.1002/2017ja024573, 2018.
Wentworth, R. C.: Enhancement of hydromagnetic emissions after geomagnetic
storms, J. Geophys. Res., 69, 2291–2298,
https://doi.org/10.1029/JZ069i011p02291, 1964.
World Data Center: Geomagnetic Equatorial Dst index Home Page, available at: http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html, last access: 9 June 2020.
Zhou, B., Yang, Y. Y., Zhang, Y. T., Gou, X. C., Cheng, B. J., Wang, J. D.,
and Li, L.: Magnetic field data processing methods of the China
Seismo-Electromagnetic Satellite, Earth Planet. Phys., 2, 455–461,
https://doi.org/10.26464/epp2018043, 2018.
Zhou, B., Cheng, B. J., Gou, X. C., Li, L., Zhang, Y. T., Wang, J. D.,
Magnes, W., Lammegger, R., Pollinger, A., Ellmeier, M., Xiao, Q., Zhu, X.
H., Yua, S. G., Yang, Y. Y., and Shen, X. H.: First in-orbit results of the
vector magnetic field measurement of the High Precision Magnetometer onboard
the China Seismo-Electromagnetic Satellite, Earth Planets Space, 71, 119,
https://doi.org/10.1186/s40623-019-1098-3, 2019.
Short summary
The CSES observed ionospheric Pc1 waves near the wave injection regions in conjugate hemispheres during the recovery phase of the geomagnetic storm on 27 August 2018. The Pc1s were found to be Alfvén waves with mixed polarisation propagating along background magnetic lines in the ionosphere. We suggest that the possible sources of Pc1 are EMIC waves generated near the plasmapause by the outward expansion of the plasmasphere into the ring current during the recovery phase of geomagnetic storms.
The CSES observed ionospheric Pc1 waves near the wave injection regions in conjugate hemispheres...