Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-657-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-657-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a formalism for computing in situ transits of Earth-directed CMEs – Part 2: Towards a forecasting tool
Pedro Corona-Romero
CORRESPONDING AUTHOR
Space Weather National Laboratory (LANCE), Insituto de Geofisica Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Campus Morelia, Morelia, Michoacan, Mexico
CONACYT-Insituto de Geofisica Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Campus Morelia, Morelia, Michoacan, Mexico
Pete Riley
Predictive Science Inc. 9990 Mesa Rim Rd Suite 170, San Diego, CA 92127, USA
Cited articles
Arge, C. N. and Pizzo, V. J.: Improvement in the prediction of solar wind
conditions using near-real time solar magnetic field updates, J.
Geophys. Res., 105, 10465–10480, https://doi.org/10.1029/1999JA000262,
2000. a
Baker, D. N., Li, X., Pulkkinen, A., Ngwira, C. M., Mays, M. L.,
Galvin, A. B., and Simunac, K. D. C.: A major solar eruptive event in
July 2012: Defining extreme space weather scenarios, Space Weather, 11,
585–591, https://doi.org/10.1002/swe.20097, 2013. a
Berdichevsky, D. B., Lepping, R. P., and Farrugia, C. J.: Geometric
considerations of the evolution of magnetic flux ropes, Phys. Rev. E,
67, 036405, https://doi.org/10.1103/PhysRevE.67.036405, 2003. a
Borrini, G., Gosling, J. T., Bame, S. J., and Feldman, W. C.: Helium
abundance enhancements in the solar wind, J. Geophys. Res.,
87, 7370–7378, https://doi.org/10.1029/JA087iA09p07370, 1982. a
Burlaga, L. F.: Magnetic clouds and force-free fields with constant alpha,
J. Geophys. Res., 93, 7217–7224,
https://doi.org/10.1029/JA093iA07p07217, 1988. a
Chen, J.: Effects of toroidal forces in current loops embedded in a
background plasma, Astrophys. J., 338, 453–470,
https://doi.org/10.1086/167211, 1989. a
Chen, J.: Theory of prominence eruption and propagation: Interplanetary
consequences, J. Geophys. Res., 101, 27499–27520,
https://doi.org/10.1029/96JA02644, 1996. a
Chen, J. and Garren, D. A.: Interplanetary magnetic clouds: Topology and
driving mechanism, Geophys. Res. Lett., 20, 2319–2322,
https://doi.org/10.1029/93GL02426, 1993. a
Cid, C., Hidalgo, M. A., Nieves-Chinchilla, T., Sequeiros, J., and
Viñas, A. F.: Plasma and Magnetic Field Inside Magnetic Clouds: a
Global Study, Sol. Phys., 207, 187–198, https://doi.org/10.1023/A:1015542108356,
2002. a
Corona-Romero, P. and Gonzalez-Esparza, J. A.: Numeric and analytic study
of interplanetary coronal mass ejection and shock evolution: Driving,
decoupling, and decaying, J. Geophys. Res.-Space,
116, A05104, https://doi.org/10.1029/2010JA016008, 2011. a
Corona-Romero, P. and Gonzalez-Esparza, J. A.: Dynamic evolution of
interplanetary shock waves driven by CMEs, in: IAU Symposium, edited by:
Mandrini, C. H. and Webb, D. F., Vol. 286 of IAU Symposium,
159–163, https://doi.org/10.1017/S1743921312004784, Cambridge University Press, 2012. a
Corona-Romero, P. and Gonzalez-Esparza, J. A.: Development of a formalism
for computing transits of Earth-directed CMEs, plasma sheaths, and shocks.
Towards a forecasting tool, Adv. Space Res., 58, 2007–2017,
https://doi.org/10.1016/j.asr.2016.01.009, 2016. a, b
Corona-Romero, P., Gonzalez-Esparza, J. A., and Aguilar-Rodriguez, E.:
Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with
Type II Radio-Burst Emission: An Analytic Study, Sol. Phys., 285,
391–410, https://doi.org/10.1007/s11207-012-0103-9, 2013. a, b, c
Corona-Romero, P., Gonzalez-Esparza, J. A., Aguilar-Rodriguez, E.,
De-la-Luz, V., and Mejia-Ambriz, J. C.: Kinematics of ICMEs/Shocks:
Blast Wave Reconstruction Using Type-II Emissions, Sol. Phys., 290,
2439–2454, https://doi.org/10.1007/s11207-015-0683-2, 2015. a, b
Corona-Romero, P., Gonzalez-Esparza, J. A., Perez-Alanis, C. A.,
Aguilar-Rodriguez, E., de-la Luz, V., and Mejia-Ambriz, J. C.: Calculating
travel times and arrival speeds of CMEs to Earth: An analytic tool for space
weather forecasting, Space Weather, 15, 464–483, https://doi.org/10.1002/2016SW001489, 2017. a, b, c, d, e, f
Dasso, S., Mandrini, C. H., and Démoulin, P.: The Magnetic Helicity
of an Interplanetary Hot Flux Rope, in: Solar Wind Ten, edited by: Velli,
M., Bruno, R., Malara, F., and Bucci, B., Vol. 679 of American
Institute of Physics Conference Series, 786–789,
https://doi.org/10.1063/1.1618710, AIP Publishing, 2003. a
Dasso, S., Nakwacki, M. S., Démoulin, P., and Mand rini, C. H.:
Progressive Transformation of a Flux Rope to an ICME. Comparative Analysis
Using the Direct and Fitted Expansion Methods, Sol. Phys., 244, 115–137,
https://doi.org/10.1007/s11207-007-9034-2, 2007. a, b
Dasso, S., Mandrini, C. H., Schmieder, B., Cremades, H., Cid, C.,
Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A. N., Rodriguez,
L., Aran, A., Menvielle, M., and Poedts, S.: Linking two consecutive
nonmerging magnetic clouds with their solar sources, J. Geophys.
Res.-Space, 114, A02109, https://doi.org/10.1029/2008JA013102, 2009. a
Démoulin, P. and Dasso, S.: Causes and consequences of magnetic cloud
expansion, Astron. Astrophys., 498, 551–566,
https://doi.org/10.1051/0004-6361/200810971, 2009. a, b, c
Echer, E.: On the preferential occurrence of interplanetary shocks in July and
November: Causes (solar wind annual dependence) and consequences (intense
magnetic storms), J. Geophys. Res., 110, A02101, https://doi.org/10.1029/2004JA010527, 2005. a
Echer, E., Gonzalez, W., Guarnieri, F., Dal Lago, A., and Vieira, L.:
Introduction to space weather, Adv. Space Res., 35, 855–865,
2005. a
Echer, E., Gonzalez, W. D., and Tsurutani, B. T.: Interplanetary conditions
leading to superintense geomagnetic storms (Dst nT) during solar
cycle 23, Geophys. Res. Lett., 35, L06S03, https://doi.org/10.1029/2007GL031755, 2008. a
Farrugia, C. J., Burlaga, L. F., Osherovich, V. A., Richardson, I. G.,
Freeman, M. P., Lepping, R. P., and Lazarus, A. J.: A study of an
expanding interplanetary magnetic cloud and its interaction with the Earth's
magnetosphere: The interplanetary aspect, J. Geophys. Res.,
98, 7621–7632, https://doi.org/10.1029/92JA02349, 1993. a
Farrugia, C. J., Osherovich, V. A., and Burlaga, L. F.: Magnetic flux
rope versus the spheromak as models for interplanetary magnetic clouds,
J. Geophys. Res., 100, 12293–12306,
https://doi.org/10.1029/95JA00272, 1995. a
Forsyth, R. J., Bothmer, V., Cid, C., Crooker, N. U., Horbury, T. S.,
Kecskemety, K., Klecker, B., Linker, J. A., Odstrcil, D., Reiner,
M. J., Richardson, I. G., Rodriguez-Pacheco, J., Schmidt, J. M., and
Wimmer-Schweingruber, R. F.: ICMEs in the Inner Heliosphere: Origin,
Evolution and Propagation Effects. Report of Working Group G, Space Sci.
Rev., 123, 383–416, https://doi.org/10.1007/s11214-006-9022-0, 2006. a, b
Gibson, S. E. and Low, B. C.: A Time-Dependent Three-Dimensional
Magnetohydrodynamic Model of the Coronal Mass Ejection, Astrophys.
J., 493, 460–473, https://doi.org/10.1086/305107, 1998. a
Gonzalez, W. D., Clúa de Gonzalez, A. L., Sobral, J. H. A., Dal
Lago, A., and Vieira, L. E.: Solar and interplanetary causes of very
intense geomagnetic storms, J. Atmos. Sol.-Terr.
Phy., 63, 403–412, https://doi.org/10.1016/S1364-6826(00)00168-1, 2001. a
Goodman, J. M.: Space Weather & Telecommunications, Vol. 782, 1st Edn., https://doi.org/10.1007/b102193, Springer,
New York, USA, 2005. a
Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas,
A., Freeland, S., and Howard, R.: The SOHO/LASCO CME Catalog, Earth
Moon Planets, 104, 295–313, https://doi.org/10.1007/s11038-008-9282-7, 2009. a, b, c
Gulisano, A. M., Démoulin, P., Dasso, S., and Rodriguez, L.:
Expansion of magnetic clouds in the outer heliosphere, Astron.
Astrophys., 543, A107, https://doi.org/10.1051/0004-6361/201118748, 2012. a
Hidalgo, M. A.: A study of the expansion and distortion of the cross section of
magnetic clouds in the interplanetary medium, J. Geophys.
Res.-Space, 108, 1320, https://doi.org/10.1029/2002JA009818,
2003. a
Hidalgo, M. A., Cid, C., Viñas, A. F., and Sequeiros, J.: A non-force-free
approach to the topology of magnetic clouds in the solar wind, J.
Geophys. Res.-Space, 107, SSH1-1–SSH 1-7,
https://doi.org/10.1029/2001JA900100,
2002. a
Howard, T.: Space Weather and Coronal Mass Ejections, Springer, New York,
USA, 2014. a
Hu, Q., Smith, C. W., Ness, N. F., and Skoug, R. M.: Multiple flux
rope magnetic ejecta in the solar wind, Journal of Geophys. Res.-Space, 109, A03102, https://doi.org/10.1029/2003JA010101, 2004. a
Jian, L., Russell, C., Luhmann, J., and Skoug, R.: Properties of
Interplanetary Coronal Mass Ejections at one AU during 1995–2004, Sol. Phys., 239, 393–436, https://doi.org/10.1007/s11207-006-0133-2, 2006. a, b
Kamide, Y. and Chian, A. C.-L.: Handbook of the Solar-Terrestrial
Environment, Springer-Verlag Berlin Heidelberg, New York, USA, 2007. a
Krall, J., Chen, J., and Santoro, R.: Drive Mechanisms of Erupting Solar
Magnetic Flux Ropes, Astrophys. J., 539, 964–982,
https://doi.org/10.1086/309256, 2000. a
Leitner, M., Farrugia, C. J., Möstl, C., Ogilvie, K. W., Galvin,
A. B., Schwenn, R., and Biernat, H. K.: Consequences of the force-free
model of magnetic clouds for their heliospheric evolution, J.
Geophys. Res.-Space, 112, A06113,
https://doi.org/10.1029/2006JA011940, 2007. a, b, c, d
Liu, Y., Luhmann, J. G., Müller-Mellin, R., Schroeder, P. C.,
Wang, L., Lin, R. P., Bale, S. D., Li, Y., Acuña, M. H., and
Sauvaud, J.-A.: A Comprehensive View of the 2006 December 13 CME: From the
Sun to Interplanetary Space, Astrophys. J., 689, 563–571,
https://doi.org/10.1086/592031, 2008. a
Lugaz, N., Farrugia, C. J., Smith, C. W., and Paulson, K.: Shocks
inside CMEs: A survey of properties from 1997 to 2006, J.
Geophys. Res.-Space, 120, 2409–2427,
https://doi.org/10.1002/2014JA020848, 2015. a
Lundquist, S.: On the Stability of Magneto-Hydrostatic Fields, Phys.
Rev., 83, 307–311, https://doi.org/10.1103/PhysRev.83.307, 1951. a, b, c, d
Mierla, M., Inhester, B., Rodriguez, L., Gissot, S., Zhukov, A., and
Srivastava, N.: On 3D reconstruction of coronal mass ejections: II.
Longitudinal and latitudinal width analysis of 31 August 2007 event, J. Atmos. Sol.-Terr. Phy., 73, 1166–1172,
https://doi.org/10.1016/j.jastp.2010.11.028, 2011. a
Mingalev, O. V., Mingalev, I. V., Mingalev, V. S., and Khodachenko,
M. L.: Analytical configurations of a force-free magnetic cylinder in the
solar wind, Geomagn. Aeronomy, 49, 574–581,
https://doi.org/10.1134/S0016793209050041, 2009. a
Moldwin, M.: An Introduction to Space Weather, Cambridge University
Press, Cambridge, UK, 2008. a
Möstl, C., Farrugia, C. J., Miklenic, C., Temmer, M., Galvin,
A. B., Luhmann, J. G., Kilpua, E. K. J., Leitner, M.,
Nieves-Chinchilla, T., Veronig, A., and Biernat, H. K.:
Multispacecraft recovery of a magnetic cloud and its origin from magnetic
reconnection on the Sun, J. Geophys. Res.-Space,
114, A04102, https://doi.org/10.1029/2008JA013657, 2009. a
Nakwacki, M. S., Dasso, S., Mandrini, C. H., and Démoulin, P.:
Analysis of large scale MHD quantities in expanding magnetic clouds,
J. Atmos. Sol.-Terr. Phy., 70, 1318–1326,
https://doi.org/10.1016/j.jastp.2008.03.006, 2008. a
NASA Goddard Space Flight Center: High resolution OMNI (HRO)
data, available at: https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/, last access: 25 May 2020a. a
NASA Goddard Space Flight Center: Low resolution OMNI (HRO)
data, available at: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni/, last access: 25 May 2020b. a
Nieves-Chinchilla, T., Hidalgo, M. A., and Sequeiros, J.: Magnetic Clouds
Observed at 1 Au During the Period 2000–2003, Sol. Phys., 232, 105–126,
https://doi.org/10.1007/s11207-005-1593-5, 2005. a
Nieves-Chinchilla, T., Linton, M. G., Hidalgo, M. A., Vourlidas, A.,
Savani, N. P., Szabo, A., Farrugia, C., and Yu, W.: A
Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds,
Astrophys. J., 823, 27, https://doi.org/10.3847/0004-637X/823/1/27, 2016. a
NSW: National Space Weather Strategy and Action Plan, National Science &
Technology Council, available at:
https://www.whitehouse.gov/wp-content/uploads/2019/03/National-Space-Weather-Strategy-and-Action-Plan-2019.pdf (last access: 14 May 2020),
2019. a
Odstrcil, D.: Modeling 3-D solar wind structure, Adv. Space
Res., 32, 497–506, https://doi.org/10.1016/S0273-1177(03)00332-6, 2003. a
Ontiveros, V. and Gonzalez-Esparza, J. A.: Geomagnetic storms caused by
shocks and ICMEs, J. Geophys. Res.-Space, 115,
A10244, https://doi.org/10.1029/2010JA015471, 2010. a, b
Osherovich, V. A., Farrugia, C. J., and Burlaga, L. F.: Dynamics of
aging magnetic clouds, Adv. Space Res., 13, 57–62,
https://doi.org/10.1016/0273-1177(93)90391-N, 1993. a
Owens, M. J., Démoulin, P., Savani, N. P., Lavraud, B., and
Ruffenach, A.: Implications of Non-cylindrical Flux Ropes for Magnetic
Cloud Reconstruction Techniques and the Interpretation of Double Flux Rope
Events, Sol. Phys., 278, 435–446, https://doi.org/10.1007/s11207-012-9939-2, 2012. a
Petrinec, S. M. and Russell, C. T.: Hydrodynamic and MHD Equations across
the Bow Shock and Along the Surfaces of Planetary Obstacles, Space Sci.
Rev., 79, 757–791, https://doi.org/10.1023/A:1004938724300, 1997. a
Pizzo, V., Millward, G., Parsons, A., Biesecker, D., Hill, S., and
Odstrcil, D.: Wang-Sheeley-Arge-Enlil Cone Model Transitions to
Operations, Space Weather, 9, 03004, https://doi.org/10.1029/2011SW000663, 2011. a
Richardson, I. G. and Cane, H. V.: Near-Earth Interplanetary Coronal Mass
Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of
Properties, Sol. Phys., 264, 189–237, https://doi.org/10.1007/s11207-010-9568-6,
2010. a
Richardson, I. G. and Cane, H. V.: Geoeffectiveness (Dst and Kp) of
interplanetary coronal mass ejections during 1995–2009 and implications for
storm forecasting, Space Weather, 9, S07005, https://doi.org/10.1029/2011SW000670,
2011. a
Riley, P., Linker, J., Mikic, Z., and Odstrcil, D.: Magnetohydrodynamic
modeling of interplanetary CMEs, IEEE T. Plasma Sci., 32,
1415–1424, 2004a. a
Riley, P., Linker, J. A., Lionello, R., Mikić, Z., Odstrcil, D.,
Hidalgo, M. A., Cid, C., Hu, Q., Lepping, R. P., Lynch, B. J., and
Rees, A.: Fitting flux ropes to a global MHD solution: a comparison of
techniques, J. Atmos. Sol.-Terr. Phy., 66,
1321–1331, https://doi.org/10.1016/j.jastp.2004.03.019, 2004b. a, b, c, d
Riley, P., Linker, J. A., Lionello, R., and Mikic, Z.: Corotating
interaction regions during the recent solar minimum: The power and
limitations of global MHD modeling, J. Atmos.
Sol.-Terr. Phy., 83, 1–10, https://doi.org/10.1016/j.jastp.2011.12.013,
2012. a
Romashets, E. P. and Vandas, M.: Asymmetric magnetic field inside a
cylindrical flux rope, Adv. Space Res., 35, 2167–2171,
https://doi.org/10.1016/j.asr.2004.12.017, 2005. a
Savani, N. P., Vourlidas, A., Szabo, A., Mays, M. L., Richardson,
I. G., Thompson, B. J., Pulkkinen, A., Evans, R., and
Nieves-Chinchilla, T.: Predicting the magnetic vectors within coronal mass
ejections arriving at Earth: 1. Initial architecture, Space Weather, 13,
374–385, https://doi.org/10.1002/2015SW001171, 2015. a, b
Savani, N. P., Vourlidas, A., Richardson, I. G., Szabo, A., Thompson,
B. J., Pulkkinen, A., Mays, M. L., Nieves-Chinchilla, T., and
Bothmer, V.: Predicting the magnetic vectors within coronal mass ejections
arriving at Earth: 2. Geomagnetic response, Space Weather, 15, 441–461,
https://doi.org/10.1002/2016SW001458, 2017. a, b
Schrijver, C. J.: Socio-Economic Hazards and Impacts of Space Weather: The
Important Range Between Mild and Extreme, Space Weather, 13, 524–528,
https://doi.org/10.1002/2015SW001252, 2015. a, b, c
Shimazu, H. and Vandas, M.: A self-similar solution of expanding
cylindrical flux ropes for any polytropic index value, Earth Planets
Space, 54, 783–790, 2002. a
Vandas, M. and Romashets, E. P.: A force-free field with constant alpha in
an oblate cylinder: A generalization of the Lundquist solution, Astron. Astrophys., 398, 801–807, https://doi.org/10.1051/0004-6361:20021691, 2003. a
Vandas, M. and Romashets, E.: Toroidal Flux Ropes with Elliptical Cross
Sections and Their Magnetic Helicity, Sol. Phys., 292, 129,
https://doi.org/10.1007/s11207-017-1149-5, 2017a. a
Vandas, M. and Romashets, E.: Magnetic cloud fit by uniform-twist toroidal
flux ropes, Astron. Astrophys., 608, A118,
https://doi.org/10.1051/0004-6361/201731412, 2017b. a
Vandas, M., Romashets, E., and Watari, S.: Magnetic clouds of oblate
shapes, Planetary Space Sci., 53, 19–24,
https://doi.org/10.1016/j.pss.2004.09.024, 2005. a
Vandas, M., Romashets, E. P., Watari, S., Geranios, A., Antoniadou,
E., and Zacharopoulou, O.: Comparison of force-free flux rope models with
observations of magnetic clouds, Adv. Space Res., 38, 441–446,
https://doi.org/10.1016/j.asr.2004.11.026, 2006. a
Vandas, M., Geranios, A., and Romashets, E.: On expansion of magnetic
clouds in the solar wind, Astrophysics and Space Sciences Transactions, 5,
35–38, https://doi.org/10.5194/astra-5-35-2009, 2009. a
van Driel-Gesztelyi, L., Goff, C. P., Démoulin, P., Culhane, J. L.,
Matthews, S. A., Harra, L. K., Mandrini, C. H., Klein, K. L., and
Kurokawa, H.: Multi-scale reconnections in a complex CME, Adv.
Space Res., 42, 858–865, https://doi.org/10.1016/j.asr.2007.04.065, 2008. a
Vourlidas, A., Lynch, B. J., Howard, R. A., and Li, Y.: How Many CMEs
Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and
Prominences in Coronagraph Observations of CMEs, Sol. Phys., 284,
179–201, https://doi.org/10.1007/s11207-012-0084-8, 2013.
a
Vourlidas, A., Patsourakos, S., and Savani, N. P.: Predicting the
geoeffective properties of coronal mass ejections: current status, open
issues and path forward, Philos. T. R. Soc.
S.-A, 377, 20180096, https://doi.org/10.1098/rsta.2018.0096, 2019. a
Wang, C., Du, D., and Richardson, J.: Characteristics of the interplanetary
coronal mass ejections in the heliosphere between 0.3 and 5.4 AU, J.
Geophys. Res., 110, A02101, https://doi.org/10.1029/2004JA010527, 2005. a, b, c
Wang, Y.-M. and Sheeley Jr., N. R.: Solar wind speed and coronal
flux-tube expansion, Astrophys. J., 355, 726–732,
https://doi.org/10.1086/168805, 1990. a
Weaver, M. and Murtagh, W.: NOAA Technical Memorandum OAR SEC-88: HALLOWEEN
SPACE WEATHER STORMS OF 2003, an optional note, Tech. rep., NOAA, Space Environment Center,
Boulder, Colorado, USA, 2004. a
Xie, H., Ofman, L., and Lawrence, G.: Cone model for halo CMEs:
Application to space weather forecasting, J. Geophys. Res.-Space, 109, A03109, https://doi.org/10.1029/2003JA010226, 2004. a
Xie, H., Gopalswamy, N., Manoharan, P. K., Lara, A., Yashiro, S., and
Lepri, S.: Long-lived geomagnetic storms and coronal mass ejections,
J. Geophys. Res.-Space, 111, A01103,
https://doi.org/10.1029/2005JA011287, 2006. a
Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett,
S. P., Rich, N. B., and Howard, R. A.: A catalog of white light coronal
mass ejections observed by the SOHO spacecraft, J. Geophys.
Res.-Space, 109, A07105, https://doi.org/10.1029/2003JA010282, 2004. a, b
Zhang, J. and Dere, K. P.: A Statistical Study of Main and Residual
Accelerations of Coronal Mass Ejections, Astrophys. J., 649,
1100–1109, https://doi.org/10.1086/506903, 2006. a
Zurbuchen, T. H. and Richardson, I. G.: In-Situ Solar Wind and Magnetic
Field Signatures of Interplanetary Coronal Mass Ejections, Space Science
Rev., 123, 31–43, https://doi.org/10.1007/s11214-006-9010-4, 2006. a, b
Short summary
Solar storms are natural phenomena that affect technologies on which our societies are highly dependent. The understanding of solar storms and the capability to anticipate their effects on our technologies is of main interest to shield our societies. In this work we present a semi-empirical approach to increase our understanding of solar storms when they hit our planet. Additionally, we also preset a possible pathway to forecast the transits of solar storms by our planet's orbit.
Solar storms are natural phenomena that affect technologies on which our societies are highly...