Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-657-2020
https://doi.org/10.5194/angeo-38-657-2020
Regular paper
 | 
05 Jun 2020
Regular paper |  | 05 Jun 2020

Development of a formalism for computing in situ transits of Earth-directed CMEs – Part 2: Towards a forecasting tool

Pedro Corona-Romero and Pete Riley

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (19 Mar 2020) by Peter Wurz
AR by Pedro Corona-Romero on behalf of the Authors (04 Apr 2020)  Manuscript 
ED: Publish as is (16 Apr 2020) by Peter Wurz
AR by Pedro Corona-Romero on behalf of the Authors (22 Apr 2020)  Manuscript 
Download
Short summary
Solar storms are natural phenomena that affect technologies on which our societies are highly dependent. The understanding of solar storms and the capability to anticipate their effects on our technologies is of main interest to shield our societies. In this work we present a semi-empirical approach to increase our understanding of solar storms when they hit our planet. Additionally, we also preset a possible pathway to forecast the transits of solar storms by our planet's orbit.