Articles | Volume 38, issue 2
https://doi.org/10.5194/angeo-38-395-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-395-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations
Nelson Bègue
CORRESPONDING AUTHOR
LACy (UMR 8105, CNRS, Université de la Réunion, Météo-France), Saint-Denis de la Réunion, France
Lerato Shikwambana
Space Science Division, South African National Space Agency, Hermanus
7200, South Africa
School of Chemistry and Physics, University of KwaZulu-Natal, Private
Bag X54001, Durban 4000, South Africa
Hassan Bencherif
LACy (UMR 8105, CNRS, Université de la Réunion, Météo-France), Saint-Denis de la Réunion, France
School of Chemistry and Physics, University of KwaZulu-Natal, Private
Bag X54001, Durban 4000, South Africa
Juan Pallotta
Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa Martelli, Buenos Aires, Argentina
Venkataraman Sivakumar
School of Chemistry and Physics, University of KwaZulu-Natal, Private
Bag X54001, Durban 4000, South Africa
Elian Wolfram
Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa Martelli, Buenos Aires, Argentina
Nkanyiso Mbatha
University of Zululand, Department of Geography, KwaDlangezwa 3886,
South Africa
Facundo Orte
Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa Martelli, Buenos Aires, Argentina
David Jean Du Preez
LACy (UMR 8105, CNRS, Université de la Réunion, Météo-France), Saint-Denis de la Réunion, France
Department Geography, Geoinformatics and Meteorology, University of
Pretoria, Pretoria 0002, South Africa
Marion Ranaivombola
LACy (UMR 8105, CNRS, Université de la Réunion, Météo-France), Saint-Denis de la Réunion, France
Stuart Piketh
North-West University, Unit for Environmental Science and Management, Potchefstroom 2520, South Africa
Paola Formenti
Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR
CNRS 7583, Université Paris-Est-Créteil, Université de Paris,
Institut Pierre Simon Laplace, Créteil, France
Related authors
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nelson Bègue, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data, 16, 4137–4159, https://doi.org/10.5194/essd-16-4137-2024, https://doi.org/10.5194/essd-16-4137-2024, 2024
Short summary
Short summary
We describe three instruments that have been measuring interactions between aerosols (particles of various origin) and light over Réunion Island since 2012. Aerosols directly or indirectly influence the temperature in the atmosphere and can interact with clouds. Details are given on how we derived aerosol properties from our measurements and how we assessed the quality of our data before sharing them with the scientific community. A good correlation was found between the three instruments.
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024, https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Michael Sicard, Alexandre Baron, Marion Ranaivombola, Dominique Gantois, Tristan Millet, Pasquale Sellitto, Nelson Bègue, Hassan Bencherif, Guillaume Payen, Nicolas Marquestaut, and Valentin Duflot
EGUsphere, https://doi.org/10.22541/essoar.170231679.99186200/v1, https://doi.org/10.22541/essoar.170231679.99186200/v1, 2024
Short summary
Short summary
This study quantifies the radiative impact over Reunion Island (21° S, 55° E) of the aerosols and water vapor injected in the stratosphere by the Hunga Tonga-Hunga Ha'apai volcano in the South Pacific. The overall aerosol and water vapor impact on the Earth’s radiation budget for the whole period is negative (cooling, -0.54 ± 0.29 W m-2) and dominated by the aerosols. At the Earth’s surface, aerosols are the main driver and produce a negative (cooling, -1.19 ± 0.40 W m-2) radiative impact.
Marion Ranaivombola, Nelson Bègue, Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Gisèle Krysztofiak, Gwenaël Berthet, Fabrice Jegou, Stuart Piketh, and Hassan Bencherif
EGUsphere, https://doi.org/10.5194/egusphere-2024-921, https://doi.org/10.5194/egusphere-2024-921, 2024
Short summary
Short summary
From September to October 2022, the Biomass Burning Aerosol Campaign (BiBAC) in Kruger National Park revealed a significant aerosol loading linked to biomass burning activity, with a southeastward transport over Southern Africa and the southwestern of Indian Ocean (SWIO) basin. The "river of smoke" phenomenon drove the plume during September toward the SWIO. One discusses the long-range transport of biomass burning from South America to Southern Africa is likely driven by climate forcings.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2645, https://doi.org/10.5194/egusphere-2023-2645, 2023
Preprint withdrawn
Short summary
Short summary
The eruption of the Hunga Tonga volcano in January 2022 released substantial amounts of aerosols, sulfur dioxide, and water vapor into the stratosphere. Satellite and ground instruments followed the displacement of the volcanic aerosol plume and its impact on ozone levels over the Indian Ocean. Ozone data reveal the presence of a persistent ozone mini-hole structure from 17 January to 22 January, with most ozone depletion occurring within the ozone layer at the location of the aerosol plume.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, Hassan Bencherif, Lucas Vaz Peres, Nelson Begue, José Valentin Bageston, Douglas Lima de Bem, Vagner Anabor, and Luiz Angelo Steffenel
EGUsphere, https://doi.org/10.5194/egusphere-2023-1471, https://doi.org/10.5194/egusphere-2023-1471, 2023
Preprint archived
Short summary
Short summary
The study examines ozone depletions at mid-latitudes in Brazil during austral spring Antarctic Ozone Hole influence events. The methodology applied used data from the total column ozone, vertical profile of the atmosphere, and reanalysis data to analyze the atmospheric dynamics. The main motivation of this work is to show how this important trace gas dynamically behaves in the atmosphere in the active period of the Antarctic Ozone Hole in regions of medium latitudes.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Pablo Facundo Orte, Elian Wolfram, Jacobo Salvador, Akira Mizuno, Nelson Bègue, Hassan Bencherif, Juan Lucas Bali, Raúl D'Elia, Andrea Pazmiño, Sophie Godin-Beekmann, Hirofumi Ohyama, and Jonathan Quiroga
Ann. Geophys., 37, 613–629, https://doi.org/10.5194/angeo-37-613-2019, https://doi.org/10.5194/angeo-37-613-2019, 2019
Short summary
Short summary
We analysed an event of short-term ozone variability due to the passage of the polar vortex over Río Gallegos (southern Argentina) with the aim of highlighting the capability of a millimetre-wave radiometer to observe ozone in the stratosphere and the low mesosphere with a high temporal resolution. It is particularly important in this subpolar region due to the high variation that this gas can suffer as a consequence of the passage of the polar vortex and the ozone hole during spring.
David J. du Preez, Jelena V. Ajtić, Hassan Bencherif, Nelson Bègue, Jean-Maurice Cadet, and Caradee Y. Wright
Ann. Geophys., 37, 129–141, https://doi.org/10.5194/angeo-37-129-2019, https://doi.org/10.5194/angeo-37-129-2019, 2019
Short summary
Short summary
Reduced atmospheric ozone results in increased solar ultraviolet radiation (UVR) at the surface which may potentially negative impact public health. We aimed to assess whether or not the break-up of the Antarctic ozone hole had an impact on ozone and UVR at Cape Point (South Africa). We found a moderate inverse relationship between ozone and UVR at midday on clear-sky days. The Antarctic ozone hole had a limited effect on ozone levels while tropical air masses more frequently affected the site.
Abdoulwahab Mohamed Toihir, Thierry Portafaix, Venkataraman Sivakumar, Hassan Bencherif, Andréa Pazmiño, and Nelson Bègue
Ann. Geophys., 36, 381–404, https://doi.org/10.5194/angeo-36-381-2018, https://doi.org/10.5194/angeo-36-381-2018, 2018
Nelson Bègue, Damien Vignelles, Gwenaël Berthet, Thierry Portafaix, Guillaume Payen, Fabrice Jégou, Hassan Benchérif, Julien Jumelet, Jean-Paul Vernier, Thibaut Lurton, Jean-Baptiste Renard, Lieven Clarisse, Vincent Duverger, Françoise Posny, Jean-Marc Metzger, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 17, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, https://doi.org/10.5194/acp-17-15019-2017, 2017
Short summary
Short summary
The space–time evolutions of the Calbuco plume are investigated by combining satellite, in situ aerosol counting and lidar observations, and a numerical model. All the data at Reunion Island reveal a twofold increase in the amount of aerosol with respect to the values observed before the eruption. The dynamic context has favored the spread of the plume exclusively in the Southern Hemisphere. This study highlights the role played by dynamical barriers in the transport of atmospheric species.
Nelson Bègue, Nkanyiso Mbatha, Hassan Bencherif, René Tato Loua, Venkataraman Sivakumar, and Thierry Leblanc
Ann. Geophys., 35, 1177–1194, https://doi.org/10.5194/angeo-35-1177-2017, https://doi.org/10.5194/angeo-35-1177-2017, 2017
Short summary
Short summary
In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Reunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. Results presented in this study confirm that SAO contributes to the formation of MILs over the tropical region.
Gwenaël Berthet, Fabrice Jégou, Valéry Catoire, Gisèle Krysztofiak, Jean-Baptiste Renard, Adam E. Bourassa, Doug A. Degenstein, Colette Brogniez, Marcel Dorf, Sebastian Kreycy, Klaus Pfeilsticker, Bodo Werner, Franck Lefèvre, Tjarda J. Roberts, Thibaut Lurton, Damien Vignelles, Nelson Bègue, Quentin Bourgeois, Daniel Daugeron, Michel Chartier, Claude Robert, Bertrand Gaubicher, and Christophe Guimbaud
Atmos. Chem. Phys., 17, 2229–2253, https://doi.org/10.5194/acp-17-2229-2017, https://doi.org/10.5194/acp-17-2229-2017, 2017
Short summary
Short summary
Since the last major volcanic event, i.e. the Pinatubo eruption in 1991, only
moderateeruptions have regularly injected sulfur into the stratosphere, typically enhancing the aerosol loading for several months. We investigate here for the first time the chemical perturbation associated with the Sarychev eruption in June 2009, using balloon-borne instruments and model calculations. Some chemical compounds are significantly affected by the aerosols, but the impact on stratospheric ozone is weak.
Lucas Vaz Peres, Hassan Bencherif, Nkanyiso Mbatha, André Passaglia Schuch, Abdoulwahab Mohamed Toihir, Nelson Bègue, Thierry Portafaix, Vagner Anabor, Damaris Kirsch Pinheiro, Neusa Maria Paes Leme, José Valentin Bageston, and Nelson Jorge Schuch
Ann. Geophys., 35, 25–37, https://doi.org/10.5194/angeo-35-25-2017, https://doi.org/10.5194/angeo-35-25-2017, 2017
Short summary
Short summary
In this paper, we analyze the total ozone column over the Southern Space Observatory, Brazil, between 1992 and 2014 by Brewer spectrometer and TOMS and OMI satellite instruments, finding good agreement between the two. In addition, the seasonal TOC variation is dominated by an annual cycle, and the Quasi-Biennial Oscillation modulation was the main mode of interannual variability and in opposite phase to the total ozone column anomaly time series.
N. Bègue, P. Tulet, J. Pelon, B. Aouizerats, A. Berger, and A. Schwarzenboeck
Atmos. Chem. Phys., 15, 3497–3516, https://doi.org/10.5194/acp-15-3497-2015, https://doi.org/10.5194/acp-15-3497-2015, 2015
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-3437, https://doi.org/10.5194/egusphere-2024-3437, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates.
Paola Formenti and Claudia Di Biagio
Earth Syst. Sci. Data, 16, 4995–5007, https://doi.org/10.5194/essd-16-4995-2024, https://doi.org/10.5194/essd-16-4995-2024, 2024
Short summary
Short summary
Particles from deserts and semi-vegetated areas (mineral dust) are important for Earth's climate and human health, notably depending on their size. In this paper we collect and make a synthesis of a body of these observations since 1972 in order to provide researchers modeling Earth's climate and developing satellite observations from space with a simple way of confronting their results and understanding their validity.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3015, https://doi.org/10.5194/egusphere-2024-3015, 2024
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analysis of samples collected during ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in the summer 2022 in the Paris greater area. After analysis of the chemical composition by means of total carbon determination and high resolution mass spectrometry, this work highlights the influence of anthropogenic inputs into the chemical composition of both urban and forested areas.
Johannes Heuser, Claudia Di Biagio, Jerome Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2381, https://doi.org/10.5194/egusphere-2024-2381, 2024
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplement by literature data, allowed to establish a generalized exponential relationship between the spectral MAC and the elemental-to-total carbon ratio (EC/TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nelson Bègue, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data, 16, 4137–4159, https://doi.org/10.5194/essd-16-4137-2024, https://doi.org/10.5194/essd-16-4137-2024, 2024
Short summary
Short summary
We describe three instruments that have been measuring interactions between aerosols (particles of various origin) and light over Réunion Island since 2012. Aerosols directly or indirectly influence the temperature in the atmosphere and can interact with clouds. Details are given on how we derived aerosol properties from our measurements and how we assessed the quality of our data before sharing them with the scientific community. A good correlation was found between the three instruments.
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024, https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2175, https://doi.org/10.5194/egusphere-2024-2175, 2024
Short summary
Short summary
Summer 2022 has been considered a proxy for future climate scenarios, given the registered hot and dry conditions. In this paper, we used the measurements from the ACROSS campaign, occurred over the Paris area in June–July 2022, in addition to observations from existing networks, to evaluate the WRF–CHIMERE model simulation over France and the Ile-de-France regions. Results over the Ile–de–France show to be satisfactory, allowing to explain the gas and aerosol variability at the ACROSS sites.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Mégane Ventura, Fabien Waquet, Isabelle Chiapello, Gérard Brogniez, Frédéric Parol, Frédérique Auriol, Rodrigue Loisil, Cyril Delegove, Luc Blarel, Oleg Dubovik, Marc Mallet, Cyrille Flamant, and Paola Formenti
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-121, https://doi.org/10.5194/amt-2024-121, 2024
Preprint under review for AMT
Short summary
Short summary
Biomass burning aerosols (BBA) from Central Africa, are transported above stratocumulus clouds. The absorption of solar energy by aerosols induce warming, altering the clouds dynamics. We developed an approach that combines polarimeter and lidar to quantify it. This methodology is assessed during the AEROCLO-SA campaign. To validate it, we used flux measurements acquired during aircraft loop descents. Major perspective is the generalization of this method to the global level.
Alexandre Mass, Hendrik Andersen, Jan Cermak, Paola Formenti, Eva Pauli, and Julian Quinting
EGUsphere, https://doi.org/10.5194/egusphere-2024-1627, https://doi.org/10.5194/egusphere-2024-1627, 2024
Short summary
Short summary
This study investigates the interaction between smoke aerosols and fog and low clouds (FLCs) in the Namib desert between June and October. Here, a satellite-based dataset of FLCs, reanalysis data and machine learning are used to systematically analyze FLCs persistence under different aerosol loadings. Aerosol plumes are shown to modify local thermodynamics which increases FLC persistence. But fully disentangling aerosol effects from meteorological ones remains a challenge.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Jean-Marcel Rivonirina, Thierry Portafaix, Solofoarisoa Rakotoniaina, Béatrice Morel, Chao Tang, Kévin Lamy, Marie Lothon, Tom Toulouse, Olivier Liandrat, Solofo Rakotondraompiana, and Hassan Bencherif
EGUsphere, https://doi.org/10.5194/egusphere-2024-1827, https://doi.org/10.5194/egusphere-2024-1827, 2024
Short summary
Short summary
The lack of ground observation instruments and the vast ocean coverage make the Southwest Indian Ocean (SWIO) region difficult to access and poorly studied. For gathering ground-based camera information, satellite measurements have been used with the primary goal of characterizing both sites Saint-Denis of Reunion Island and Antananarivo Madagascar in terms of cloudiness. This study shows the particularity of each site and enhances our understanding of cloud properties, particularly in the SWIO.
Michael Sicard, Alexandre Baron, Marion Ranaivombola, Dominique Gantois, Tristan Millet, Pasquale Sellitto, Nelson Bègue, Hassan Bencherif, Guillaume Payen, Nicolas Marquestaut, and Valentin Duflot
EGUsphere, https://doi.org/10.22541/essoar.170231679.99186200/v1, https://doi.org/10.22541/essoar.170231679.99186200/v1, 2024
Short summary
Short summary
This study quantifies the radiative impact over Reunion Island (21° S, 55° E) of the aerosols and water vapor injected in the stratosphere by the Hunga Tonga-Hunga Ha'apai volcano in the South Pacific. The overall aerosol and water vapor impact on the Earth’s radiation budget for the whole period is negative (cooling, -0.54 ± 0.29 W m-2) and dominated by the aerosols. At the Earth’s surface, aerosols are the main driver and produce a negative (cooling, -1.19 ± 0.40 W m-2) radiative impact.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Marion Ranaivombola, Nelson Bègue, Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Gisèle Krysztofiak, Gwenaël Berthet, Fabrice Jegou, Stuart Piketh, and Hassan Bencherif
EGUsphere, https://doi.org/10.5194/egusphere-2024-921, https://doi.org/10.5194/egusphere-2024-921, 2024
Short summary
Short summary
From September to October 2022, the Biomass Burning Aerosol Campaign (BiBAC) in Kruger National Park revealed a significant aerosol loading linked to biomass burning activity, with a southeastward transport over Southern Africa and the southwestern of Indian Ocean (SWIO) basin. The "river of smoke" phenomenon drove the plume during September toward the SWIO. One discusses the long-range transport of biomass burning from South America to Southern Africa is likely driven by climate forcings.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Revised manuscript has not been submitted
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024, https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Short summary
This study investigates the fractional solubility of iron (Fe) in dust particles along the coast of Namibia, a critical region for the atmospheric Fe supply of the South Atlantic Ocean. Our results suggest a possible two-way interplay whereby marine biogenic emissions from the coastal marine ecosystems into the atmosphere would increase the solubility of Fe-bearing dust by photo-reduction processes. The subsequent deposition of soluble Fe could act to further enhance marine biogenic emissions.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2645, https://doi.org/10.5194/egusphere-2023-2645, 2023
Preprint withdrawn
Short summary
Short summary
The eruption of the Hunga Tonga volcano in January 2022 released substantial amounts of aerosols, sulfur dioxide, and water vapor into the stratosphere. Satellite and ground instruments followed the displacement of the volcanic aerosol plume and its impact on ozone levels over the Indian Ocean. Ozone data reveal the presence of a persistent ozone mini-hole structure from 17 January to 22 January, with most ozone depletion occurring within the ozone layer at the location of the aerosol plume.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2023-2319, https://doi.org/10.5194/egusphere-2023-2319, 2023
Short summary
Short summary
Our study examined the interaction between atmospheric particles and moisture over the south-eastern Atlantic Ocean during the biomass burning seasons in Africa. We found that organic components of these particles play a more important role in aerosol-moisture interactions than previously expected. This discovery is important as such interactions impact radiation and climate. Current climate models might need better representations of the moisture-absorbing properties of organic aerosols.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven Howell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2199, https://doi.org/10.5194/egusphere-2023-2199, 2023
Short summary
Short summary
Using airborne measurements over the South-East Atlantic, our study explored how aerosols—tiny atmospheric particles—interact with moisture over the ocean, especially during the biomass burning season. We noticed unique patterns in their behavior at different altitudes and introduced a predictive model for this moisture interaction. Our results aid our understanding of aerosol-moisture interactions and benefit the research of aerosol radiative effect in this climatically significant region.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Juan Vicente Pallotta, Silvânia Alves de Carvalho, Fabio Juliano da Silva Lopes, Alexandre Cacheffo, Eduardo Landulfo, and Henrique Melo Jorge Barbosa
Geosci. Instrum. Method. Data Syst., 12, 171–185, https://doi.org/10.5194/gi-12-171-2023, https://doi.org/10.5194/gi-12-171-2023, 2023
Short summary
Short summary
Lidar networks coordinate efforts of different groups, providing guidelines to homogenize retrievals from different instruments. We describe an ongoing effort to develop the Lidar Processing Pipeline (LPP) collaboratively, a collection of tools developed in C/C++ to handle all the steps of a typical lidar analysis. Analysis of simulations and real lidar data showcases the LPP’s features. From this exercise, we draw a roadmap to guide future development, accommodating the needs of our community.
Bibiana Lopes, Damaris Kirsch Pinheiro, Hassan Bencherif, Gabriela Dornelles Bittencourt, Lucas Vaz Peres, Jean-Maurice Cadet, Thierry Portafaix, and Nathalie Tissot Boiaski
EGUsphere, https://doi.org/10.5194/egusphere-2023-1474, https://doi.org/10.5194/egusphere-2023-1474, 2023
Preprint archived
Short summary
Short summary
This is a study of the climatology and behavior of UV radiation on the surface during events of secondary effects of the Antarctic ozone hole over south of Brazil. Considering all implications of excess exposure to UV radiation on the surface on human health it is important to know how much radiation the population is being exposed to during those events. Results showed that for each 1 % decrease in the ozone total column, the UV index tends to increase by 4 % in the region of study.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, Hassan Bencherif, Lucas Vaz Peres, Nelson Begue, José Valentin Bageston, Douglas Lima de Bem, Vagner Anabor, and Luiz Angelo Steffenel
EGUsphere, https://doi.org/10.5194/egusphere-2023-1471, https://doi.org/10.5194/egusphere-2023-1471, 2023
Preprint archived
Short summary
Short summary
The study examines ozone depletions at mid-latitudes in Brazil during austral spring Antarctic Ozone Hole influence events. The methodology applied used data from the total column ozone, vertical profile of the atmosphere, and reanalysis data to analyze the atmospheric dynamics. The main motivation of this work is to show how this important trace gas dynamically behaves in the atmosphere in the active period of the Antarctic Ozone Hole in regions of medium latitudes.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Constance K. Segakweng, Pieter G. van Zyl, Cathy Liousse, Johan P. Beukes, Jan-Stefan Swartz, Eric Gardrat, Maria Dias-Alves, Brigitte Language, Roelof P. Burger, and Stuart J. Piketh
Atmos. Chem. Phys., 22, 10291–10317, https://doi.org/10.5194/acp-22-10291-2022, https://doi.org/10.5194/acp-22-10291-2022, 2022
Short summary
Short summary
A detailed size-resolved assessment of the chemical characteristics of outdoor and indoor aerosols collected in low-income urban settlements in South Africa indicated the significance of household combustion for cooking and space heating – an important source of pollutants in the developing world – to atmospheric chemical composition. The regional impact of industrial sources in the highly industrialised and densely populated north-eastern interior of South Africa was also evident.
Michael John Weston, Stuart John Piketh, Frédéric Burnet, Stephen Broccardo, Cyrielle Denjean, Thierry Bourrianne, and Paola Formenti
Atmos. Chem. Phys., 22, 10221–10245, https://doi.org/10.5194/acp-22-10221-2022, https://doi.org/10.5194/acp-22-10221-2022, 2022
Short summary
Short summary
An aerosol-aware microphysics scheme is evaluated for fog cases in Namibia. AEROCLO-sA campaign observations are used to access and parameterise the model. The model cloud condensation nuclei activation is lower than the observations. The scheme is designed for clouds with updrafts, while fog typically forms in stable conditions. A pseudo updraft speed assigned to the lowest model levels helps achieve more realistic cloud droplet number concentration and size distribution in the model.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022, https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Short summary
The complexity of geophysics systems results in time series with fluctuations at all timescales. The analysis of their variability then consists in decomposing them into a set of basis signals. We developed here a new adaptive filtering method called empirical adaptive wavelet decomposition that optimizes the empirical-mode decomposition existing technique, overcoming its drawbacks using the rigour of wavelets as defined in the recently published empirical wavelet transform method.
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022, https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary
Short summary
MONARCH reanalysis of desert dust aerosols extends the existing observation-based information for mineral dust monitoring by providing 3-hourly upper-air, surface and total column key geophysical variables of the dust cycle over Northern Africa, the Middle East and Europe, at a 0.1° horizontal resolution in a rotated grid, from 2007 to 2016. This work provides evidence of the high accuracy of this data set and its suitability for air quality and health and climate service applications.
Cyrille Flamant, Marco Gaetani, Jean-Pierre Chaboureau, Patrick Chazette, Juan Cuesta, Stuart John Piketh, and Paola Formenti
Atmos. Chem. Phys., 22, 5701–5724, https://doi.org/10.5194/acp-22-5701-2022, https://doi.org/10.5194/acp-22-5701-2022, 2022
Short summary
Short summary
Rivers of smoke extend from tropical southern Africa towards the Indian Ocean during the winter fire season, controlled by the interaction of tropical easterly waves, and westerly waves at mid latitudes. During the AEROCLO-sA field campaign in 2017, a river of smoke was directly observed over Namibia. In this paper, the evolution and atmospheric drivers of the river of smoke are described, and the role of a mid-latitude cut-off low in lifting the smoke to the upper troposphere is highlighted.
Paola Formenti, Claudia Di Biagio, Yue Huang, Jasper Kok, Marc Daniel Mallet, Damien Boulanger, and Mathieu Cazaunau
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-403, https://doi.org/10.5194/amt-2021-403, 2021
Publication in AMT not foreseen
Short summary
Short summary
This paper provides with standardized correction factors for the measurements of the most common instruments used in the atmosphere to measure the concentration per size of aerosol particles. These correction factors are provided to users with supplementary information for their use.
Marco Gaetani, Benjamin Pohl, Maria del Carmen Alvarez Castro, Cyrille Flamant, and Paola Formenti
Atmos. Chem. Phys., 21, 16575–16591, https://doi.org/10.5194/acp-21-16575-2021, https://doi.org/10.5194/acp-21-16575-2021, 2021
Short summary
Short summary
During the dry austral winter, biomass fires in tropical Africa emit large amounts of smoke in the atmosphere, with large impacts on climate and air quality. The study of the relationship between atmospheric circulation and smoke transport shows that midlatitude atmospheric disturbances may deflect the smoke from tropical Africa towards southern Africa. Understanding the distribution of the smoke in the region is crucial for climate modelling and air quality monitoring.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Danitza Klopper, Stuart J. Piketh, Roelof Burger, Simon Dirkse, and Paola Formenti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-668, https://doi.org/10.5194/acp-2021-668, 2021
Revised manuscript not accepted
Short summary
Short summary
The western coast of southern Africa is a key region of the Earth, with persistent clouds and particles also transported from distant forest fires. The atmosphere is stratified as a result of the different temperatures of the cold Atlantic ocean and the warm semi-arid land, and that affects how the particles will be distributed whilst in the atmosphere and how long they will persist. We used long term satellite and in situ observations to describe, for the first time, those main features.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Danitza Klopper, Paola Formenti, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Gaimoz, Patrick Hease, Fadi Lahmidi, Cécile Mirande-Bret, Sylvain Triquet, Zirui Zeng, and Stuart J. Piketh
Atmos. Chem. Phys., 20, 15811–15833, https://doi.org/10.5194/acp-20-15811-2020, https://doi.org/10.5194/acp-20-15811-2020, 2020
Short summary
Short summary
The chemical composition of aerosol particles is very important as it determines to which extent they can affect the Earth's climate by acting with solar light and modifying the properties of clouds. The South Atlantic region is a remote and under-explored region to date where these effects could be important. The measurements presented in this paper consist in the analysis of samples collected at a coastal site in Namibia. The first long-term source apportionment is presented and discussed.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020, https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Short summary
This paper presents numerical simulations using two regional climate models to study the impact of biomass fire plumes from central Africa on the radiative balance of this region. The results indicate that biomass fires can either warm the regional climate when they are located above low clouds or cool it when they are located above land. They can also alter sea and land surface temperatures by decreasing solar radiation at the surface. Finally, they can also modify the atmospheric dynamics.
David O. De Haan, Lelia N. Hawkins, Kevin Jansen, Hannah G. Welsh, Raunak Pednekar, Alexia de Loera, Natalie G. Jimenez, Margaret A. Tolbert, Mathieu Cazaunau, Aline Gratien, Antonin Bergé, Edouard Pangui, Paola Formenti, and Jean-François Doussin
Atmos. Chem. Phys., 20, 9581–9590, https://doi.org/10.5194/acp-20-9581-2020, https://doi.org/10.5194/acp-20-9581-2020, 2020
Short summary
Short summary
When exposed to glyoxal in chamber experiments, dry ammonium or methylammonium sulfate particles turn brown immediately and reversibly without increasing in size. Much less browning was observed on wet aerosol particles, and no browning was observed with sodium sulfate aerosol. While estimated dry aerosol light absorption caused by background glyoxal (70 ppt) is insignificant compared to that of secondary brown carbon overall, in polluted regions this process could be a source of brown carbon.
Samuel E. LeBlanc, Jens Redemann, Connor Flynn, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal-Rosenheimer, Yohei Shinozuka, Stephen Dunagan, Robert P. Dahlgren, Kerry Meyer, James Podolske, Steven G. Howell, Steffen Freitag, Jennifer Small-Griswold, Brent Holben, Michael Diamond, Robert Wood, Paola Formenti, Stuart Piketh, Gillian Maggs-Kölling, Monja Gerber, and Andreas Namwoonde
Atmos. Chem. Phys., 20, 1565–1590, https://doi.org/10.5194/acp-20-1565-2020, https://doi.org/10.5194/acp-20-1565-2020, 2020
Short summary
Short summary
The southeast Atlantic during August–October experiences layers of smoke from biomass burning over marine stratocumulus clouds. Here we present the light attenuation of the smoke and its dependence in the spatial, vertical, and spectral domain through direct measurements from an airborne platform during September 2016. From our observations of this climatically important smoke, we found an average aerosol optical depth of 0.32 at 500 nm, slightly lower than comparative satellite measurements.
Claudia Di Biagio, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, Sophie Nowak, Meinrat O. Andreae, Konrad Kandler, Thuraya Saeed, Stuart Piketh, David Seibert, Earle Williams, and Jean-François Doussin
Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, https://doi.org/10.5194/acp-19-15503-2019, 2019
Short summary
Short summary
This paper presents a new dataset of laboratory measurements of the shortwave (SW) spectral complex refractive index and single-scattering albedo (SSA) for global mineral dust aerosols of varying origin and composition. Our results show that the dust refractive index and SSA vary strongly from source to source, mostly due to particle iron content changes. We recommend that source-dependent values of the SW spectral refractive index and SSA be used in models and remote sensing applications.
Patrick Chazette, Cyrille Flamant, Julien Totems, Marco Gaetani, Gwendoline Smith, Alexandre Baron, Xavier Landsheere, Karine Desboeufs, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 19, 14979–15005, https://doi.org/10.5194/acp-19-14979-2019, https://doi.org/10.5194/acp-19-14979-2019, 2019
Short summary
Short summary
Evolution of the vertical distribution and optical properties of aerosols in the free troposphere is analysed for the first time over the Namibian coast, a region where uncertainties on aerosol–cloud coupling in climate simulations are significant. The high variability of atmospheric aerosol composition is highlighted using a combination of ground-based, airborne and space-borne lidar. Aerosols are mainly transported from Angola, but part of the highest aerosol layer may come from South America.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, José Valentin Bageston, Hassan Bencherif, Luis Angelo Steffenel, and Lucas Vaz Peres
Ann. Geophys., 37, 1049–1061, https://doi.org/10.5194/angeo-37-1049-2019, https://doi.org/10.5194/angeo-37-1049-2019, 2019
Short summary
Short summary
The Antarctic ozone hole (AOH) directly influences the Antarctic region, where its levels can reach values below 220 DU. The temporary depletion of ozone in Antarctica generally occurs between the beginning and middle of August, during the austral spring, and extends to November, when a temporary reduction in ozone content is observed in a large region over Antarctica. However, masses of ozone-depleted air can break away from the ozone hole and reach mid-latitude regions.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Marc D. Mallet, Barbara D'Anna, Aurélie Même, Maria Chiara Bove, Federico Cassola, Giandomenico Pace, Karine Desboeufs, Claudia Di Biagio, Jean-Francois Doussin, Michel Maille, Dario Massabò, Jean Sciare, Pascal Zapf, Alcide Giorgio di Sarra, and Paola Formenti
Atmos. Chem. Phys., 19, 11123–11142, https://doi.org/10.5194/acp-19-11123-2019, https://doi.org/10.5194/acp-19-11123-2019, 2019
Short summary
Short summary
We present findings from a summertime field campaign at the remote island of Lampedusa in the central Mediterranean Sea. We show that the aerosol loading is similar to coastal sites around the Mediterranean. We observe higher loadings of sulfate and aged organic aerosol from air masses transported over the central and eastern Mediterranean in comparison to those from the western Mediterranean. These results highlight the rarity of pristine air masses, even in remote marine environments.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Pablo Facundo Orte, Elian Wolfram, Jacobo Salvador, Akira Mizuno, Nelson Bègue, Hassan Bencherif, Juan Lucas Bali, Raúl D'Elia, Andrea Pazmiño, Sophie Godin-Beekmann, Hirofumi Ohyama, and Jonathan Quiroga
Ann. Geophys., 37, 613–629, https://doi.org/10.5194/angeo-37-613-2019, https://doi.org/10.5194/angeo-37-613-2019, 2019
Short summary
Short summary
We analysed an event of short-term ozone variability due to the passage of the polar vortex over Río Gallegos (southern Argentina) with the aim of highlighting the capability of a millimetre-wave radiometer to observe ozone in the stratosphere and the low mesosphere with a high temporal resolution. It is particularly important in this subpolar region due to the high variation that this gas can suffer as a consequence of the passage of the polar vortex and the ozone hole during spring.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
David J. du Preez, Jelena V. Ajtić, Hassan Bencherif, Nelson Bègue, Jean-Maurice Cadet, and Caradee Y. Wright
Ann. Geophys., 37, 129–141, https://doi.org/10.5194/angeo-37-129-2019, https://doi.org/10.5194/angeo-37-129-2019, 2019
Short summary
Short summary
Reduced atmospheric ozone results in increased solar ultraviolet radiation (UVR) at the surface which may potentially negative impact public health. We aimed to assess whether or not the break-up of the Antarctic ozone hole had an impact on ozone and UVR at Cape Point (South Africa). We found a moderate inverse relationship between ozone and UVR at midday on clear-sky days. The Antarctic ozone hole had a limited effect on ozone levels while tropical air masses more frequently affected the site.
María José Granados-Muñoz, Michael Sicard, Roberto Román, Jose Antonio Benavent-Oltra, Rubén Barragán, Gerard Brogniez, Cyrielle Denjean, Marc Mallet, Paola Formenti, Benjamín Torres, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 523–542, https://doi.org/10.5194/acp-19-523-2019, https://doi.org/10.5194/acp-19-523-2019, 2019
Short summary
Short summary
The influence of mineral dust in the direct radiative effect is affected by a large uncertainty. This study investigates mineral dust radiative properties during an episode affecting southern Spain in June 2013 by using remote sensors and data collected on board an aircraft to feed a radiative transfer model. The study reveals the complexity of parameterizing these models, as characterizing mineral dust is still quite challenging, and the need for accurate mineral dust measurements.
Paola Formenti, Lydie Mbemba Kabuiku, Isabelle Chiapello, Fabrice Ducos, François Dulac, and Didier Tanré
Atmos. Meas. Tech., 11, 6761–6784, https://doi.org/10.5194/amt-11-6761-2018, https://doi.org/10.5194/amt-11-6761-2018, 2018
Short summary
Short summary
Aerosol particles from natural and anthropogenic sources are climate regulators as they can counteract or amplify the warming effect of greenhouse gases, but are difficult to observe due to their temporal and spatial variability. Satellite sensors can provide the needed global coverage but need validation. In this paper we explore the capability of the POLDER-3 advanced space-borne sensor to observe aerosols over the western Mediterranean region.
Claire L. Ryder, Franco Marenco, Jennifer K. Brooke, Victor Estelles, Richard Cotton, Paola Formenti, James B. McQuaid, Hannah C. Price, Dantong Liu, Patrick Ausset, Phil D. Rosenberg, Jonathan W. Taylor, Tom Choularton, Keith Bower, Hugh Coe, Martin Gallagher, Jonathan Crosier, Gary Lloyd, Eleanor J. Highwood, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018, https://doi.org/10.5194/acp-18-17225-2018, 2018
Short summary
Short summary
Every year, millions of tons of Saharan dust particles are carried across the Atlantic by the wind, where they can affect weather patterns and climate. Their sizes span orders of magnitude, but the largest (over 10 microns – around the width of a human hair) are difficult to measure and few observations exist. Here we show new aircraft observations of large dust particles, finding more than we would expect, and we quantify their properties which allow them to interact with atmospheric radiation.
Paola Formenti, Stuart John Piketh, Andreas Namwoonde, Danitza Klopper, Roelof Burger, Mathieu Cazaunau, Anaïs Feron, Cécile Gaimoz, Stephen Broccardo, Nicola Walton, Karine Desboeufs, Guillaume Siour, Mattheus Hanghome, Samuel Mafwila, Edosa Omoregie, Wolfgang Junkermann, and Willy Maenhaut
Atmos. Chem. Phys., 18, 17003–17016, https://doi.org/10.5194/acp-18-17003-2018, https://doi.org/10.5194/acp-18-17003-2018, 2018
Short summary
Short summary
Three-years of continuous measurements at the Henties Bay Aerosol Observatory (HBAO; 22°S, 14°05’E), Namibia, show that during the austral wintertime, long- and medium-range transport of pollution from biomass and fossil fuel burning give rise to peaks of light-absorbing black carbon aerosols into the marine boundary layer ahead of the main biomass burning season. This could affect the cloud properties.
Dario Massabò, Silvia Giulia Danelli, Paolo Brotto, Antonio Comite, Camilla Costa, Andrea Di Cesare, Jean François Doussin, Federico Ferraro, Paola Formenti, Elena Gatta, Laura Negretti, Maddalena Oliva, Franco Parodi, Luigi Vezzulli, and Paolo Prati
Atmos. Meas. Tech., 11, 5885–5900, https://doi.org/10.5194/amt-11-5885-2018, https://doi.org/10.5194/amt-11-5885-2018, 2018
Andrea Pazmiño, Sophie Godin-Beekmann, Alain Hauchecorne, Chantal Claud, Sergey Khaykin, Florence Goutail, Elian Wolfram, Jacobo Salvador, and Eduardo Quel
Atmos. Chem. Phys., 18, 7557–7572, https://doi.org/10.5194/acp-18-7557-2018, https://doi.org/10.5194/acp-18-7557-2018, 2018
Short summary
Short summary
The article mentions several symptoms of recovery. Multilinear regression analysis provides significant increase since 2001 of total ozone in Sept and during the period of maximum ozone destruction (15 Sept–15 Oct). There is significant decrease of ozone mass deficit for the same periods, decrease of relative area of total ozone values lower than 175 DU within the vortex (1 Sept–15 Oct since 2010) and a delay in the occurrence of ozone levels below 125 DU since 2005 for the 1 Sept–15 Oct period.
Stephen Broccardo, Klaus-Peter Heue, David Walter, Christian Meyer, Alexander Kokhanovsky, Ronald van der A, Stuart Piketh, Kristy Langerman, and Ulrich Platt
Atmos. Meas. Tech., 11, 2797–2819, https://doi.org/10.5194/amt-11-2797-2018, https://doi.org/10.5194/amt-11-2797-2018, 2018
Short summary
Short summary
Measurements of nitrogen dioxide, known to originate from industrial and automotive combustion sources, have been made from space for two decades. Successive generations of instrument bring improvements in ground-pixel resolution; however features in the atmosphere are known to be smaller than what the satellites can resolve. Measurements of urban and industrial areas using a high-resolution airborne instrument allow the impact of the satellite's relatively low resolution to be evaluated.
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Abdoulwahab Mohamed Toihir, Thierry Portafaix, Venkataraman Sivakumar, Hassan Bencherif, Andréa Pazmiño, and Nelson Bègue
Ann. Geophys., 36, 381–404, https://doi.org/10.5194/angeo-36-381-2018, https://doi.org/10.5194/angeo-36-381-2018, 2018
Gabriela Dornelles Bittencourt, Caroline Bresciani, Damaris Kirsch Pinheiro, José Valentin Bageston, Nelson Jorge Schuch, Hassan Bencherif, Neusa Paes Leme, and Lucas Vaz Peres
Ann. Geophys., 36, 415–424, https://doi.org/10.5194/angeo-36-415-2018, https://doi.org/10.5194/angeo-36-415-2018, 2018
Short summary
Short summary
Ozone-poor air mass can be released and leave through the Antarctic ozone hole, thus reaching midlatitude regions. The objective of this study is to show how tropospheric and stratospheric dynamics behaved during the event. The ozone-poor air mass began to operate in the region on 20 October 2016. A reduction of ozone content of approximately 23 % was observed in relation to the climatology average. The advance of the ozone-poor air mass caused intense reductions in total ozone content.
Caroline Bresciani, Gabriela Dornelles Bittencourt, José Valentin Bageston, Damaris Kirsch Pinheiro, Nelson Jorge Schuch, Hassan Bencherif, Neusa Paes Leme, and Lucas Vaz Peres
Ann. Geophys., 36, 405–413, https://doi.org/10.5194/angeo-36-405-2018, https://doi.org/10.5194/angeo-36-405-2018, 2018
Short summary
Short summary
This paper investigates the passage of the ozone secondary effect (OSE) over southern Brazil and Uruguay in October 2016 by using multi-instrumental data, i.e. ozonesonde, satellites and ground-based instruments, and the large OSE influence on the ozone concentration and on the temperature was shown.
Mateus S. Venturini, José V. Bageston, Nattan R. Caetano, Lucas V. Peres, Hassan Bencherif, and Nelson J. Schuch
Ann. Geophys., 36, 301–310, https://doi.org/10.5194/angeo-36-301-2018, https://doi.org/10.5194/angeo-36-301-2018, 2018
Short summary
Short summary
In the past years, the study of the temperature trend and its variability in the upper atmosphere has increased. However, most works were conducted in regions of medium and high latitude. Therefore, we aim to analyze a low-latitude region, the south of Brazil and surrounding areas. Using data from the TIMED/SABER instrument and applying the Trend-Run model for temperature trend analyses, no substantial temperature trend was found in the MLT region (80–100 km) from the years 2003 to 2014.
Brent N. Holben, Jhoon Kim, Itaru Sano, Sonoyo Mukai, Thomas F. Eck, David M. Giles, Joel S. Schafer, Aliaksandr Sinyuk, Ilya Slutsker, Alexander Smirnov, Mikhail Sorokin, Bruce E. Anderson, Huizheng Che, Myungje Choi, James H. Crawford, Richard A. Ferrare, Michael J. Garay, Ukkyo Jeong, Mijin Kim, Woogyung Kim, Nichola Knox, Zhengqiang Li, Hwee S. Lim, Yang Liu, Hal Maring, Makiko Nakata, Kenneth E. Pickering, Stuart Piketh, Jens Redemann, Jeffrey S. Reid, Santo Salinas, Sora Seo, Fuyi Tan, Sachchida N. Tripathi, Owen B. Toon, and Qingyang Xiao
Atmos. Chem. Phys., 18, 655–671, https://doi.org/10.5194/acp-18-655-2018, https://doi.org/10.5194/acp-18-655-2018, 2018
Short summary
Short summary
Aerosol particles, such as smoke, vary over space and time. This paper describes a series of very high-resolution ground-based aerosol measurement networks and associated studies that contributed new understanding of aerosol processes and detailed comparisons to satellite aerosol validation. Significantly, these networks also provide an opportunity to statistically relate grab samples of an aerosol parameter to companion satellite observations, a step toward air quality assessment from space.
Kévin Lamy, Thierry Portafaix, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Béatrice Morel, Andrea Pazmino, Jean Marc Metzger, Frédérique Auriol, Christine Deroo, Valentin Duflot, Philippe Goloub, and Charles N. Long
Atmos. Chem. Phys., 18, 227–246, https://doi.org/10.5194/acp-18-227-2018, https://doi.org/10.5194/acp-18-227-2018, 2018
Short summary
Short summary
This work focuses on solar radiation in the tropics, more specifically on ultraviolet radiation. From ground-based and satellite observations of the chemical state of the atmosphere, we were able to model the ultraviolet measurements measured in the southern tropics with a very small error. This is a first step to modelling and predicting future ultraviolet levels in the tropics from chemistry-climate projections.
Nelson Bègue, Damien Vignelles, Gwenaël Berthet, Thierry Portafaix, Guillaume Payen, Fabrice Jégou, Hassan Benchérif, Julien Jumelet, Jean-Paul Vernier, Thibaut Lurton, Jean-Baptiste Renard, Lieven Clarisse, Vincent Duverger, Françoise Posny, Jean-Marc Metzger, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 17, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, https://doi.org/10.5194/acp-17-15019-2017, 2017
Short summary
Short summary
The space–time evolutions of the Calbuco plume are investigated by combining satellite, in situ aerosol counting and lidar observations, and a numerical model. All the data at Reunion Island reveal a twofold increase in the amount of aerosol with respect to the values observed before the eruption. The dynamic context has favored the spread of the plume exclusively in the Southern Hemisphere. This study highlights the role played by dynamical barriers in the transport of atmospheric species.
Takafumi Sugita, Hideharu Akiyoshi, Elián Wolfram, Jacobo Salvador, Hirofumi Ohyama, and Akira Mizuno
Atmos. Meas. Tech., 10, 4947–4964, https://doi.org/10.5194/amt-10-4947-2017, https://doi.org/10.5194/amt-10-4947-2017, 2017
Short summary
Short summary
We present comparison of ozone profiles from DIAL, MLS, and chemical transport model simulations over Río Gallegos (52° S), Argentina, during the 2009 spring. Measurements were performed in the vicinity of the polar vortex and inside it on some occasions. The results show a good agreement between DIAL and MLS with mean differences of ±0.1 ppmv between 6 hPa and 56 hPa. MIROC-CTM also agrees with DIAL, with mean differences of ±0.3 ppmv between 10 hPa and 56 hPa.
Nelson Bègue, Nkanyiso Mbatha, Hassan Bencherif, René Tato Loua, Venkataraman Sivakumar, and Thierry Leblanc
Ann. Geophys., 35, 1177–1194, https://doi.org/10.5194/angeo-35-1177-2017, https://doi.org/10.5194/angeo-35-1177-2017, 2017
Short summary
Short summary
In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Reunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. Results presented in this study confirm that SAO contributes to the formation of MILs over the tropical region.
Claudia Di Biagio, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Nicolas Marchand, and Jean-François Doussin
Atmos. Meas. Tech., 10, 2923–2939, https://doi.org/10.5194/amt-10-2923-2017, https://doi.org/10.5194/amt-10-2923-2017, 2017
Short summary
Short summary
Mineral dust is one of the most abundant aerosol species at the global scale and an accurate estimation of its absorption at solar wavelengths is crucial to assess its impact on climate. In this work we provide an estimate of the Aethalometer multiple scattering correction for mineral dust aerosols at 450 and 660 nm. Our results suggest that the use of an optimized correction factor can lead to up to 11 % higher absorption coefficient and to 3 % higher single scattering albedo for mineral dust.
Lorenzo Caponi, Paola Formenti, Dario Massabó, Claudia Di Biagio, Mathieu Cazaunau, Edouard Pangui, Servanne Chevaillier, Gautier Landrot, Meinrat O. Andreae, Konrad Kandler, Stuart Piketh, Thuraya Saeed, Dave Seibert, Earle Williams, Yves Balkanski, Paolo Prati, and Jean-François Doussin
Atmos. Chem. Phys., 17, 7175–7191, https://doi.org/10.5194/acp-17-7175-2017, https://doi.org/10.5194/acp-17-7175-2017, 2017
Short summary
Short summary
This paper presents new laboratory measurements of the shortwave mass absorption efficiency (MAE) used by climate models for mineral dust of different origin and at different sizes. We found that small particles are more efficient, by given mass, in absorbing radiation, particularly at shorter wavelength. Because dust has high concentrations in the atmosphere, light absorption by mineral dust can be competitive to other absorbing atmospheric aerosols such as black and brown carbon.
Igor B. Konovalov, Matthias Beekmann, Evgeny V. Berezin, Paola Formenti, and Meinrat O. Andreae
Atmos. Chem. Phys., 17, 4513–4537, https://doi.org/10.5194/acp-17-4513-2017, https://doi.org/10.5194/acp-17-4513-2017, 2017
Short summary
Short summary
A shortage of consistent observational evidence on biomass burning (BB) aerosol aging processes hinders the development of their adequate representations in atmospheric models. Here we show that useful insights into the BB aerosol dynamics can be obtained from analysis of satellite measurements of aerosol optical depth and carbon dioxide. Our results indicate that aging processes strongly affect the evolution of BB aerosol in smoke plumes from wildfires in Siberia.
Giuliano Liuzzi, Guido Masiello, Carmine Serio, Daniela Meloni, Claudia Di Biagio, and Paola Formenti
Atmos. Meas. Tech., 10, 599–615, https://doi.org/10.5194/amt-10-599-2017, https://doi.org/10.5194/amt-10-599-2017, 2017
Short summary
Short summary
In this work we have given a contribution to better understand some of the properties of the desert dust plumes in the western Mediterranean, using both direct measurements and satellite observations. This study has mainly evidenced that satellite observations can provide information about the geographical provenance of dust. This is important because such variability is reflected in the way in which dust interacts with atmosphere and impacts over the observed infrared radiation from satellites.
Gwenaël Berthet, Fabrice Jégou, Valéry Catoire, Gisèle Krysztofiak, Jean-Baptiste Renard, Adam E. Bourassa, Doug A. Degenstein, Colette Brogniez, Marcel Dorf, Sebastian Kreycy, Klaus Pfeilsticker, Bodo Werner, Franck Lefèvre, Tjarda J. Roberts, Thibaut Lurton, Damien Vignelles, Nelson Bègue, Quentin Bourgeois, Daniel Daugeron, Michel Chartier, Claude Robert, Bertrand Gaubicher, and Christophe Guimbaud
Atmos. Chem. Phys., 17, 2229–2253, https://doi.org/10.5194/acp-17-2229-2017, https://doi.org/10.5194/acp-17-2229-2017, 2017
Short summary
Short summary
Since the last major volcanic event, i.e. the Pinatubo eruption in 1991, only
moderateeruptions have regularly injected sulfur into the stratosphere, typically enhancing the aerosol loading for several months. We investigate here for the first time the chemical perturbation associated with the Sarychev eruption in June 2009, using balloon-borne instruments and model calculations. Some chemical compounds are significantly affected by the aerosols, but the impact on stratospheric ozone is weak.
Claudia Di Biagio, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, Sophie Nowak, Sandrine Caquineau, Meinrat O. Andreae, Konrad Kandler, Thuraya Saeed, Stuart Piketh, David Seibert, Earle Williams, and Jean-François Doussin
Atmos. Chem. Phys., 17, 1901–1929, https://doi.org/10.5194/acp-17-1901-2017, https://doi.org/10.5194/acp-17-1901-2017, 2017
Short summary
Short summary
Modeling the interaction of dust with long-wave (LW) radiation is still a challenge due to the scarcity of information on their refractive index. In this paper, we present a unique dataset of dust refractive indices obtained from in situ measurements in a large smog chamber. Our results show that the dust LW refractive index varies strongly from source to source due to particle composition changes. We recommend taking this variability into account in climate and remote sensing applications.
Lucas Vaz Peres, Hassan Bencherif, Nkanyiso Mbatha, André Passaglia Schuch, Abdoulwahab Mohamed Toihir, Nelson Bègue, Thierry Portafaix, Vagner Anabor, Damaris Kirsch Pinheiro, Neusa Maria Paes Leme, José Valentin Bageston, and Nelson Jorge Schuch
Ann. Geophys., 35, 25–37, https://doi.org/10.5194/angeo-35-25-2017, https://doi.org/10.5194/angeo-35-25-2017, 2017
Short summary
Short summary
In this paper, we analyze the total ozone column over the Southern Space Observatory, Brazil, between 1992 and 2014 by Brewer spectrometer and TOMS and OMI satellite instruments, finding good agreement between the two. In addition, the seasonal TOC variation is dominated by an annual cycle, and the Quasi-Biennial Oscillation modulation was the main mode of interannual variability and in opposite phase to the total ozone column anomaly time series.
Claudia Di Biagio, Paola Formenti, Lionel Doppler, Cécile Gaimoz, Noel Grand, Gerard Ancellet, Jean-Luc Attié, Silvia Bucci, Philippe Dubuisson, Federico Fierli, Marc Mallet, and François Ravetta
Atmos. Chem. Phys., 16, 10591–10607, https://doi.org/10.5194/acp-16-10591-2016, https://doi.org/10.5194/acp-16-10591-2016, 2016
Short summary
Short summary
Pollution aerosols strongly influence the composition of the Western Mediterranean, but at present little is known on their optical properties. Here, we report observations of pollution aerosols measured during the TRAQA airborne campaign in summer 2012. Data from this study indicate a large variability of the absorption for pollution particles. This variability strongly influences their direct radiative effect, with possible consequences on the hydrological cycle in this part of the basin.
Daan Hubert, Jean-Christopher Lambert, Tijl Verhoelst, José Granville, Arno Keppens, Jean-Luc Baray, Adam E. Bourassa, Ugo Cortesi, Doug A. Degenstein, Lucien Froidevaux, Sophie Godin-Beekmann, Karl W. Hoppel, Bryan J. Johnson, Erkki Kyrölä, Thierry Leblanc, Günter Lichtenberg, Marion Marchand, C. Thomas McElroy, Donal Murtagh, Hideaki Nakane, Thierry Portafaix, Richard Querel, James M. Russell III, Jacobo Salvador, Herman G. J. Smit, Kerstin Stebel, Wolfgang Steinbrecht, Kevin B. Strawbridge, René Stübi, Daan P. J. Swart, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Joachim Urban, Joanna A. E. van Gijsel, Roeland Van Malderen, Peter von der Gathen, Kaley A. Walker, Elian Wolfram, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, https://doi.org/10.5194/amt-9-2497-2016, 2016
Short summary
Short summary
A more detailed understanding of satellite O3 profile data records is vital for further progress in O3 research. To this end, we made a comprehensive assessment of 14 limb/occultation profilers using ground-based reference data. The mutual consistency of satellite O3 in terms of bias, short-term variability and decadal stability is generally good over most of the stratosphere. However, we identified some exceptions that impact the quality of recently merged data sets and ozone trend assessments.
S. Mailler, L. Menut, A. G. di Sarra, S. Becagli, T. Di Iorio, B. Bessagnet, R. Briant, P. Formenti, J.-F. Doussin, J. L. Gómez-Amo, M. Mallet, G. Rea, G. Siour, D. M. Sferlazzo, R. Traversi, R. Udisti, and S. Turquety
Atmos. Chem. Phys., 16, 1219–1244, https://doi.org/10.5194/acp-16-1219-2016, https://doi.org/10.5194/acp-16-1219-2016, 2016
Short summary
Short summary
We studied the impact of aerosols on tropospheric photolysis rates at Lampedusa during the CharMEx/ADRIMED campaign in June 2013. It is shown by using the CHIMERE chemistry-transport model (CTM) as well as in situ and remote-sensing measurements that taking into account the radiative effect of the tropospheric aerosols improves the ability of the model to reproduce the observed photolysis rates. It is hence important for CTMs to include the radiative effect of aerosols on photochemistry.
C. Denjean, F. Cassola, A. Mazzino, S. Triquet, S. Chevaillier, N. Grand, T. Bourrianne, G. Momboisse, K. Sellegri, A. Schwarzenbock, E. Freney, M. Mallet, and P. Formenti
Atmos. Chem. Phys., 16, 1081–1104, https://doi.org/10.5194/acp-16-1081-2016, https://doi.org/10.5194/acp-16-1081-2016, 2016
Short summary
Short summary
This study investigates the size distribution, chemical composition, and optical properties of Saharan mineral dust transported over the western Mediterranean using in situ measurements collected from aircraft. Their variability due to altitude, time of transport, and mixing rate with pollution particles are discussed. We found moderate light absorption of the dust plumes even in the presence of pollution particles and the persistence of large dust particles after transport in the Mediterranean.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
A. M. Toihir, H. Bencherif, V. Sivakumar, L. El Amraoui, T. Portafaix, and N. Mbatha
Ann. Geophys., 33, 1135–1146, https://doi.org/10.5194/angeo-33-1135-2015, https://doi.org/10.5194/angeo-33-1135-2015, 2015
C. Di Biagio, L. Doppler, C. Gaimoz, N. Grand, G. Ancellet, J.-C. Raut, M. Beekmann, A. Borbon, K. Sartelet, J.-L. Attié, F. Ravetta, and P. Formenti
Atmos. Chem. Phys., 15, 9611–9630, https://doi.org/10.5194/acp-15-9611-2015, https://doi.org/10.5194/acp-15-9611-2015, 2015
Short summary
Short summary
Observations from this study indicate that continental pollution largely affects the atmospheric composition and structure of the western Mediterranean basin. Pollution plumes reach 3000-4000 m in altitude and present a very complex and highly stratified structure, characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Also we report the observations of high levels of ultrafine particles over the basin, possibly linked to new particle formation events.
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
Atmos. Chem. Phys., 15, 8479–8520, https://doi.org/10.5194/acp-15-8479-2015, https://doi.org/10.5194/acp-15-8479-2015, 2015
Short summary
Short summary
Measurements of the Saharan atmosphere and of atmospheric mineral dust are lacking but are vital to our understanding of the climate of this region and their impacts further afield. Novel observations were made by the Fennec climate programme during June 2011 and 2012 using ground-based, remote sensing and airborne platforms. Here we describe the airborne observations and the contributions they have made to furthering our understanding of the Saharan climate system.
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, P. Formenti, and F. Meleux
Atmos. Chem. Phys., 15, 6159–6182, https://doi.org/10.5194/acp-15-6159-2015, https://doi.org/10.5194/acp-15-6159-2015, 2015
Short summary
Short summary
The ozone and aerosol concentration variability is studied over the Euro-Mediterranean area during the months of June and July 2013 and in the framework of the ADRIMED project. A first analysis is performed using meteorological variables, ozone and aerosol concentrations using routine network station, satellite and specific ADRIMED project airborne measurements. This analysis is complemented by modeling using the WRF and CHIMERE regional models.
N. Bègue, P. Tulet, J. Pelon, B. Aouizerats, A. Berger, and A. Schwarzenboeck
Atmos. Chem. Phys., 15, 3497–3516, https://doi.org/10.5194/acp-15-3497-2015, https://doi.org/10.5194/acp-15-3497-2015, 2015
C. Denjean, P. Formenti, B. Picquet-Varrault, E. Pangui, P. Zapf, Y. Katrib, C. Giorio, A. Tapparo, A. Monod, B. Temime-Roussel, P. Decorse, C. Mangeney, and J. F. Doussin
Atmos. Chem. Phys., 15, 3339–3358, https://doi.org/10.5194/acp-15-3339-2015, https://doi.org/10.5194/acp-15-3339-2015, 2015
P. Nabat, S. Somot, M. Mallet, M. Michou, F. Sevault, F. Driouech, D. Meloni, A. di Sarra, C. Di Biagio, P. Formenti, M. Sicard, J.-F. Léon, and M.-N. Bouin
Atmos. Chem. Phys., 15, 3303–3326, https://doi.org/10.5194/acp-15-3303-2015, https://doi.org/10.5194/acp-15-3303-2015, 2015
Short summary
Short summary
This paper uses an original approach based on a coupled regional aerosol--atmosphere--ocean model to study the dust radiative effects over the Mediterranean in summer 2012. After an evaluation of the prognostic aerosol scheme, the dust aerosol daily variability is shown to improve the simulated surface radiation and temperature at the daily scale. It has also a significant impact on the summer average, thus highlighting the importance of a relevant representation of aerosols in climate models.
C. Denjean, P. Formenti, B. Picquet-Varrault, M. Camredon, E. Pangui, P. Zapf, Y. Katrib, C. Giorio, A. Tapparo, B. Temime-Roussel, A. Monod, B. Aumont, and J. F. Doussin
Atmos. Chem. Phys., 15, 883–897, https://doi.org/10.5194/acp-15-883-2015, https://doi.org/10.5194/acp-15-883-2015, 2015
C. Di Biagio, H. Boucher, S. Caquineau, S. Chevaillier, J. Cuesta, and P. Formenti
Atmos. Chem. Phys., 14, 11093–11116, https://doi.org/10.5194/acp-14-11093-2014, https://doi.org/10.5194/acp-14-11093-2014, 2014
P. Formenti, S. Caquineau, K. Desboeufs, A. Klaver, S. Chevaillier, E. Journet, and J. L. Rajot
Atmos. Chem. Phys., 14, 10663–10686, https://doi.org/10.5194/acp-14-10663-2014, https://doi.org/10.5194/acp-14-10663-2014, 2014
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, and P. Formenti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23075-2014, https://doi.org/10.5194/acpd-14-23075-2014, 2014
Revised manuscript not accepted
J. C. A. van Peet, R. J. van der A, O. N. E. Tuinder, E. Wolfram, J. Salvador, P. F. Levelt, and H. M. Kelder
Atmos. Meas. Tech., 7, 859–876, https://doi.org/10.5194/amt-7-859-2014, https://doi.org/10.5194/amt-7-859-2014, 2014
C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin
Atmos. Meas. Tech., 7, 183–197, https://doi.org/10.5194/amt-7-183-2014, https://doi.org/10.5194/amt-7-183-2014, 2014
N. Mbatha, V. Sivakumar, H. Bencherif, and S. Malinga
Ann. Geophys., 31, 1709–1719, https://doi.org/10.5194/angeo-31-1709-2013, https://doi.org/10.5194/angeo-31-1709-2013, 2013
A. Waked, C. Seigneur, F. Couvidat, Y. Kim, K. Sartelet, C. Afif, A. Borbon, P. Formenti, and S. Sauvage
Atmos. Chem. Phys., 13, 5873–5886, https://doi.org/10.5194/acp-13-5873-2013, https://doi.org/10.5194/acp-13-5873-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Aerosols and particles
Measurements of aerosols and charged particles on the BEXUS18 stratospheric balloon
Erika Brattich, Encarnación Serrano Castillo, Fabrizio Giulietti, Jean-Baptiste Renard, Sachi N. Tripathi, Kunal Ghosh, Gwenael Berthet, Damien Vignelles, and Laura Tositti
Ann. Geophys., 37, 389–403, https://doi.org/10.5194/angeo-37-389-2019, https://doi.org/10.5194/angeo-37-389-2019, 2019
Short summary
Short summary
This paper describes the aerosol measurement setup and results obtained from the BEXUS18 stratospheric balloon within the A5-Unib (Advanced Atmospheric Aerosol Acquisition and Analysis) experiment performed on 10 October 2014 in northern Sweden (Kiruna). The experiment and the results here presented broaden the understanding of the processes linking the presence of charges with particles all over the vertical heights from the ground to the stratosphere.
Cited articles
Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R. A.,
Gaitley, B. J., Crean, K. A., Remer, L. A., and Holben, B.: Comparison of
coincident Multiangle Imaging Spectroradiometer and Moderate Resolution
Imaging Spectroradiometer aerosol optical depths over land and ocean scenes
containing Aerosol Robotic Network sites, J. Geophys. Res.-Atmos., 110, https://doi.org/10.1029/2004JD004693, 2005.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F. D.: Smoking rain clouds over the
Amazon, Science, 303, 1337–1342, 2004.
Angström, A.: The parameters of atmospheric
turbidity, Tellus, 16, 64–75, 1964.
Alam, K., Qureshi, S., and Blaschke, T.: Monitoring spatio-temporal aerosol
patterns over Pakistan based on MODIS, TOMS, and MISR satellite data and a
HYSPLIT model, Atmos. Environ., 45, 4641–4651, 2011.
Baddock, M. C., Bullard, J. E., and Bryant, R. G.: Dust source identification using
MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia,
Remote Sens. Environ., 113, 1511–1528, https://doi.org/10.1016/j.rse.2009.03.002,
2009.
Baker, A. R., Laskina, O., and Grassian, V. H.: Processing and Ageing in the
Atmosphere, in: Mineral dust, Springer, Dordrecht, 75–92, 2014.
Bennouna, Y. S., Cachorro, V. E., Torres, B., Toledano, C., Berjón, A., de
Frutos, A. M., and Alonso Fernández, C. I.: Atmospheric turbidity
determined by the annual cycle of the aerosol optical depth over
north-center Spain from ground (AERONET) and satellite (MODIS), Atmos. Environ., 67, 352–364, 2013.
Bègue, N., Tulet, P., Chaboureau, J. P., Roberts, G., Gomes, L., and
Mallet, M.: Long-range transport of Saharan dust over northwestern Europe
during EUCAARI 2008 campaign: Evolution of dust optical properties by
scavenging, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2012JD017611, 2012.
Bègue, N., Vignelles, D., Berthet, G., Portafaix, T., Payen, G.,
Jégou, F., Bencherif, H., Jumelet, J., Vernier, J. P., Lurton., T.,
Renard, J. B., Clarisse., L., Duverger, V., Posny, F., Metzger, J. M., and
Godin-Beekmann, S.: Long-range isentropic transport of stratospheric
aerosols over Southern Hemisphere following the Calbuco eruption in April
2015, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, 2017.
Bhartia, P. K.: OMI Algorithm Theoretical Basis Document Volume II, OMI
Ozone Products, ATBD-OMI-02, Version 2.0, 2002.
Bourassa, A. E., Degenstein, D. A., Elash, B. J., and Llewellyn, E. J.:
Evolution of the stratospheric aerosol enhancement following the eruptions
of Okmok and Kasatochi: Odin-OSIRIS measurements, J. Geophys. Res.-Atmos., 115,
D00L03, https://doi.org/10.1029/2009JD013274, 2010.
Bourassa, A. E., McLinden, C. A., Bathgate, A. F., Elash, B. J., and
Degenstein, D. A.: Precision estimate for Odin-OSIRIS limb scatter
retrievals, J. Geophys. Res.-Atmos., 117, D04303, https://doi.org/10.1029/2011JD016976, 2012.
Bréon, F. M., Vermeulen, A., and Descloitres, J.: An evaluation of
satellite aerosol products against sunphotometer measurements, Remote Sens. Environ., 115, 3102–3111, 2011.
Carn, S., Clarisse, L., and Prata, A. J.: Multi-decadal satellite
measurements of global volcanic degassing, J. Volcanol. Geoth. Res., 311, 99–134, 2016.
Chen, B., Stein, A. F., Castell, N., de la Rosa, J. D., Sanchez de la
Campa, A. M., Gonzalez-Castanedo, Y., and Draxler, R. R.: Modeling and surface
observations of arsenic dispersion from a large Cu-smelter in southwestern
Europe, Atmos. Environ., 49, 114–122, https://doi.org/10.1016/j.atmosenv.2011.12.014, 2012.
Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., and
Holben, B. N.: Validation of MODIS aerosol optical depth retrieval over
land, Geophys. Res. Lett., 29, 1617, https://doi.org/10.1029/2001GL013205, 2002.
Clarisse, L., Hurtmans, D., Clerbaux, C., Hadji-Lazaro, J., Ngadi, Y., and
Coheur, P.-F.: Retrieval of sulphur dioxide from the infrared atmospheric
sounding interferometer (IASI), Atmos. Meas. Tech., 5, 581–594, https://doi.org/10.5194/amt-5-581-2012, 2012.
D'Amico, G., Amodeo, A., Mattis, I., Freudenthaler, V., and Pappalardo, G.: EARLINET Single Calculus Chain – technical – Part 1: Pre-processing of raw lidar data, Atmos. Meas. Tech., 9, 491–507, https://doi.org/10.5194/amt-9-491-2016, 2016.
Das, S., Dey, S., Dash, S. K., Giuliani, G., and Solmon, F.: Dust aerosol
feedback on the Indian summer monsoon: Sensitivity to absorption property,
J. Geophys. Res.-Atmos., 120, 9642–9652, 2015.
Deshler, T., Adriani, A., Gobbi, G. P., Hofmann, D. J., Di Donfrancesco, G.,
and Johnson, B. J.: Volcanic aerosol and ozone depletion within the
Antarctic polar vortex during the austral spring of 1991, Geophys. Res. Lett., 19, 1819–1822,
1992
Diaz, S. B., Paladini, A. A., Braile, H. G., Dieguez, M. D. C., Deferrari,
G. A., Vernet, M., and Vrsalovic, J.: Global and direct UV irradiance
variation in the Nahuel Huapi National Park (Patagonia, Argentina) after the
eruption of Puyehue-Cordon Caulle (Chile), J. Atmos. Sol.-Terr. Phy., 112, 47–56, 2014.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res.-Atmos.,
105, 20673–20696, 2000.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman., Y. J., Eck,
T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties
retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance
measurements, J. Geophys. Res.-Atmos., 105, 9791–9806, 2000.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang,
P., Eck, T. F., Volten, H., Muñoz, O., Veihelman, B., Van der Zande,
W. J., Leon, J. F., Sorokin, M., and Slutsker, I.: Application of spheroid
models to account for aerosol particle nonsphericity in remote sensing of
desert dust, J. Geophys. Res.-Atmos., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (Hybrid Single Particle Lagragian
Integrated Trajectory), Air Resources Laborator, National Oceanic and
Atmospheric Administration, Silver Spring, available at: http://www.arl.noaa.gov/ready/hysplit4.html (last access: 5 January 2020), 2003.
Eck, T. F., Holben, B., Ward, D., Mukelabai, M., Dubovik, O., Smirnov, A.,
Schafer, J., Hsu, N., Piketh, S., and Queface, A.: Variability of biomass burning
aerosol optical characteristics in southern Africa during the SAFARI 2000
dry season campaign and a comparison of single scattering albedo estimates
from radiometric measurements, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002JD002321, 2003.
Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Glob, P., Chen, H. B.,
Chatenet, B., Gomes, L., Zhang, X. Y., Tsay, S. C., Ji, Q., Giles, D.,
and Slutsker, I.: Columnar aerosol optical properties at AERONET sites in
central eastern Asia and aerosol transport to the tropical mid-Pacific,
J. Geophys. Res.-Atmos., 110, D06202, https://doi.org/10.1029/2004JD005274, 2005.
El-Metwally, M., Alfaro, S. C., Abdel Wahab, M. M., Zakey, A. S., and Chatenet, B.:
Seasonal and inter-annual variability of the aerosol content in Cairo
(Egypt) as deduced from the comparison of MODIS aerosol retrievals with
direct AERONET measurements, Atmos. Res., 97, 14–25, https://doi.org/10.1016/j.atmosres.2010.03.003, 2010.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
Appl. Opt., 23, 652–653, 1984.
Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., Chatfield, R., Silva Dias, P., Artaxo, P., Andreae, M. O., Grell, G., Rodrigues, L. F., Fazenda, A., and Panetta, J.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation, Atmos. Chem. Phys., 9, 2843–2861, https://doi.org/10.5194/acp-9-2843-2009, 2009.
Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S., and Moran, M. D.: A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, 2016.
Fyfe, J. C., Salzen, K., Cole, J. N. S., Gillett, N. P., and Vernier, J. P.:
Surface response to stratospheric aerosol changes in a coupled
atmosphere–ocean model, Geophys. Res. Lett., 40, 584–588, https://doi.org/10.1002/grl.50156, 2013.
Garstang, M., Tyson, P. D., Swap, R., Edwards, M., Kållberg, P., and
Lindesay, J. A.: Horizontal and vertical transport of air over southern
Africa, J. Geophys. Res.-Atmos, 101, 23721–23736, 1996.
Gassmann, M. I. and Mazzeo, N. A.: Air pollution potential: Regional study
in Argentina, Environ. Manage., 25, 375–382, 2000.
Gooding, J. L., Clanton, U. S., Gabel, E. M., and Warren, J. L.: El
Chichón volcanic ash in the stratosphere: particle abundances and size
distributions after the 1982 eruption, Geophys. Res. Lett., 10, 1033–1036, 1983.
Guermazi, H., Sellitto, P., Serbaji, M. M., Legras, B., and Rekhiss, F.:
Assessment of the Combined Sensitivity of Nadir TIR Aerosols Satellite
Observations after a Moderate to Volcanic Stratospheric SO2 and Eruption, Volcanic Plumes: Impacts on the Atmosphere and Insights into Volcanic Processes, 7, 84, https://doi.org/10.3390/geosciences7030084, 2019.
Hao, W. M., Ward, D. E., Susott, R. A., Babbitt, R. E., Nordgren, B. L.,
Kaufman, Y. J., Holben, B. N., and Giles, D. M.: Comparison of aerosol
optical thickness measurements by MODIS, AERONET sun photometers, and Forest
Service handheld sun photometers in southern Africa during the SAFARI 2000
campaign, Int. J. Remote Sens., 26, 4169–4183, 2005.
Hauser, A., Oesch, D., and Foppa, N.: Aerosol optical depth over land:
Comparing AERONET, AVHRR and MODIS, Geophys. Res. Lett., 32, L17816, https://doi.org/10.1029/2005GL023579, 2005.
Haywood, J. M., Jones, A., and Jones, G. S.: The impact of volcanic eruptions
in the period 2000–2013 on global mean temperature trends evaluated in the
HadGEM2-ES climate model, Atmos. Sci. Lett., 15, 92–96, https://doi.org/10.1002/asl2.471, 2013.
Hobbs, P. V., Tuell, J. P., Hegg, D. A., Radke, L. F., and Elgroth, M. W.:
Particles a nd gases from the 1980–1981 volcanic eruptions of Mr. St.
Helens, J. Geophys. Res.-Atmos., 87, 11062–12086, 1982.
Hoelzemann, J. J., Longo, K. M., Fonseca, R. M., Do Rosá Rio, N. M.,
Elbern, H., Freitas, S. R., and Pires, C.: Regional representativity of
AERONET observation sites during the biomass burning season in South America
determined by correlation studies with MODIS Aerosol Optical Depth, J. Geophys. Res.-Atmos., 114, D13301, https://doi.org/10.1029/2008JD010369, 2009.
Ichoku, C., Remer, L. A., and Eck, T. F.: Quantitative evaluation and
intercomparison of morning and afternoon Moderate Resolution Imaging
Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua, J. Geophys. Res.-Atmos.,
110, https://doi.org/10.1029/2004JD004987, 2005.
Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., and Neely
III, R. R.: The influence of the Calbuco eruption on the 2015 Antarctic
ozone hole in a fully coupled chemistry-climate model, Geophys. Res. Lett., 44, 2556–2561, https://doi.org/10.1002/2016GL071925, 2017.
Kharol, S. K., Badarinath, K. V. S., Sharma, A. R., Kaskaoutis, D. G.,
and Kambezidis, H. D.: Multiyear analysis of Terra/Aqua MODIS aerosol optical
depth and ground observations over tropical urban region of Hyderabad,
India, Atmos. Environ., 45, 1532–1542, https://doi.org/10.1016/j.atmosenv.2010.12.047, 2011.
Koffman, B. G., Dowd, E. G., Osterberg, E. C., Ferris, D. G., Hartman, L.
H., Wheatley, S. D., Kurbatov, A. V., Wong, G. J., Markle, B. R., Dunbar,
N. W., Kreutz, K. J., and Yates, M.: Rapid transport of ash and sulfate from
the 2011 Puyehue-Cordón Caulle (Chile) eruption to West Antarctica,
J. Geophys. Res.-Atmos., 122, 8908–8920, 2017.
Kravitz, B., Robock, A., and Bourassa, A.: Negligible climatic effects from
the 2008 Okmok and Kasatochi volcanic eruptions, J. Geophys. Res.-Atmos., 115, D00L05, https://doi.org/10.1029/2009JD013525, 2010.
Kravitz, B., Robock, A., Bourassa, A., Deshler, T., Wu, D., Mattis, I.,
Finger, F., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Barnes, J.
E.: Simulation and observations of stratospheric aerosols from the 2009
Sarychev volcanic eruption, J. Geophys. Res.-Atmos., 116, D18211,
https://doi.org/10.1029/2010JD015501, 2011.
Kristiansen, N. I., Prata, A. J., Stohl, A., and Carn, S. A.: Stratospheric
volcanic ash emissions from the 13 February 2014 Kelut eruption, Geophys.
Res. Lett., 42, 588–596, https://doi.org/10.1002/2014GL062307,
2015.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
Kumar, K. R., Kang, N., Sivakumar, V., and Griffith, D.: Temporal
characteristics of columnar aerosol optical properties and radiative forcing
(2011–2015) measured at AERONET's Pretoria_CSIR_DPSS site in South Africa, Atmos. Environ., 165, 274–289, 2017.
Labitzke, K. and McCormick, M.: Stratospheric temperature increases due to
Pinatubo aerosols, Geophys. Res. Lett., 19, 207–210, 1992.
Lehahn, Y., Koren, I., Boss, E., Ben-Ami, Y., and Altaratz, O.: Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data, Atmos. Chem. Phys., 10, 6711–6720, https://doi.org/10.5194/acp-10-6711-2010, 2010.
Li, F., Ginoux, P., and Ramaswamy, V.: Transport of Patagonian dust to
Antarctica, J. Geophys. Res.-Atmos., 115, D18217, https://doi.org/10.1029/2009JD012356, 2010.
Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A fast and sensitive
new satellite SO2 retrieval algorithm based on principal component analysis:
application to the ozone monitoring instrument, Geophys. Res. Lett., 32, 6314–6318,
2013.
Lopes, F. J. S, Mariano, G. L., Landulfo, E., and Mariano, E. V. C.: Impacts of Biomass Burning in the Atmosphere of the Southeastern Region of Brazil Using Remote Sensing Systems, Atmospheric Aerosols – Regional Characteristics – Chemistry and Physics, Hayder Abdul-Razzak, IntechOpen, https://doi.org/10.5772/50406, 2012.
Lopes, J. S., Silva, F., Antuña Marrero, J. J., Taha, J. C., and Landulfo, E.: Synergetic Aerosol Layer Observation after the 2015 Calbuco Volcanic Eruption Event, Remote Sens., 11, rs11020195, https://doi.org/10.3390/rs11020195, 2019.
Madry, W. L., Toon O. B., and O'Dowd, C. D.: Modeled optical thickness of
sea-salt aerosol, J. Geophys. Res.-Atmos., 116, D08211, https://doi.org/10.1029/2010JD014691, 2011.
Mather, T. A., Tsanev, V. I., Pyle, D. M., McGonigle, A. J. S., Oppenheimer, C., and Allen, A. G.: Characterization and evolution of tropospheric plumes from
Lascar and Villarrica volcanoes, Chile, J. Geophys. Res.-Atmos., 109, D21303, https://doi.org/10.1029/2004JD004934, 2004.
Martin, R. S., Mather, T. A., Pyle, D. M., Power, M., Tsanev, V. I.,
Oppenheimer, C., Allen, A. G., Horwell, C. J., and Ward, E. P. W.: Size
distributions of fine silicate and other particles in Masaya's volcanic
plume, J. Geophys. Res.-Atmos., 114, D09217, https://doi.org/10.1029/2008JD011211, 2009.
McCormick, M. P., Thomason, L. W., and Trepte, C. R.: Atmospheric effects of
the Mt Pinatubo eruption, Nature, 373, 399–404, 1995.
More, S., Kumar, P. P., Gupta, P., Devara, P. C. S., and Aher, G.: Comparison of
aerosol products retrieved from AERONET, MICROTOPS, and MODIS over a
tropical urban city, Pune, India, Aerosol. Air. Qual. Res., 13, 107–121, 2013.
Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan,
S. J., Neely III., R. R., Marsh., D. R., Conley, A., Bardeen, C. G., and
Gettelman., A.: Global volcanic aerosol properties derived from emissions,
1990–2014, using CESM1 (WACCM), J. Geophys. Res.-Atmos., 121, 2332–2348, https://doi.org/10.1002/2015JD024290, 2016.
Neely III, R. R., Toon, O. B., Solomon, S., Vernier, J. P., Alvarez, C.,
English, E. M., Rosenlof, K. H., Mills, J. M., Bardeen, C. G., Daniel, J.
S., and Thayer, J. P.: Recent anthropogenic increases in SO2 from Asia have
minimal impact on stratospheric aerosol, Geophys. Res. Lett., 32, 999–1004,
https://doi.org/10.1002/grl.50263, 2013.
Ningombam, S. S., Larson, E. J. L., Dumka, U. C., Estellés, V.,
Campanelli, M., and Steve, C.: Long-term (1995–2018) aerosol optical depth
derived using ground based AERONET and SKYNET measurements from aerosol
aged-background sites, Atmos. Pollut. Res., 10, 608–620, 2019.
Omar, M. A, Hu, A. H., Powell, Y., Liu, K. A., Hunt, Z., and Young, W. H.: Overview
of the CALIPSO Mission and CALIOP Data Processing Algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, 2009.
Otero, L. A., Ristori, P. R., Papandrea, S. D., Pallotta, J. V., D'elia, R.,
L., and Quel, E. J.: Mediciones en la patagonia argentina de espesor
óptico de aerosoles con fotómetros solares de la red AERONET,
Asociación Física Argentina; Anales AFA, 26, 186–189, 2015.
Piketh, S. J., Annegarn, H. J., and Tyson, P. D.: Lower tropospheric aerosol
loadings over South Africa: The relative contribution of aeolian dust,
industrial emissions, and biomass burning, J. Geophys. Res.-Atmos., 104, 1597–1607, 1999.
Porter, J. N., Horton, K. A., Mouginis-Mark, P. J., Lienert, B., Sharma, S. K., Lau, E., Sutton, A. J., Elias, T., and Oppenheimer, C.: Sun photometer and
lidar measurements of the plume from the Hawaii Kilauea Volcano Pu'u O'o
vent: Aerosol flux and SO2 lifetime, Geophys. Res. Lett., 32, 301–304, 2002.
Prasad, A. K. and Singh, R. P.: Comparison of MISR-MODIS aerosol optical depth
over the Indo-Gangetic basin during the winter and summer seasons
(2000–2005), Remote Sens. Environ. 107, 109–119, 2007.
Reckziegel, F., Bustos, E., Mingari, L., Báez, W., Villarosa, G., Folch,
A., Collini., E., Viramonte, J., Romero, J., and Osores, S.: Forecasting
volcanic ash dispersal and coeval resuspension during the April–May 2015
Calbuco eruption, J. Volcanol. Geoth. Res., 321, 44–57, 2016.
Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T., Dolgii, S. I., Herber, A. B., Nagai, T., Neely III, R. R., Nevzorov, A. V., Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., and Vernier, J.-P.: Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys. Res. Lett., 41, 7763–7769, https://doi.org/10.1002/2014GL061541, 2014.
Ristori, P., Otero, L., Jin, Y., Barja, B., Shimizu, A., Barbero, A.,
Salvador, J., Bali, J. L., Herrera, M., Etala, P., Acquesta, A., Quel,
E., Sugimoto, N., and Mizuno, A.: SAVER.NET LiDAR network in Southern
America, EPJ Web of Conferences, 176, 09011, https://doi.org/10.1051/epjconf/201817609011, 2018.
Rose, W. I., Chaun, R. L., and Woods, D. C.: Small particles in the plume of Mr. St. Helens, J. Geophys. Res.-Atmos., 87, 4956–4962, 1982.
Rose, W. I., Bluth, G. J. S., and Ernst, G. G.: Integrating retrievals of
volcanic cloud characteristics from satellite remote sensors: a summary,
Philos. T. Roy. Soc. A, 358, 1585–1606, 2000.
Sakai, T., Uchino, O., Nagai, T., Liley, B., Morino, I., and Fujimoto, T.: Long-term variation of stratospheric aerosols observed with lidars over Tsukuba, Japan, from 1982 and Lauder, New Zealand, from 1992 to 2015, J. Geophys. Res.-Atmos., 121, 10–283, 2016.
Sangeetha, S. K., Sivakumar, V., and Gebreslasie, M.: Long-range transport of
SO2 over South Africa: A case study of the Calbuco volcanic eruption in
April 2015, Atmos. Environ., 185, 78–90, 2018.
Sawamura, P., Vernier, J. P., Barnes, J. E., Berkoff, T. A., Welton, E. J.,
Alados-Arboledas, L., and Lange, D.: Stratospheric AOD after the 2011
eruption of Nabro volcano measured by lidars over the Northern Hemisphere,
Environ. Res. Lett., 7, 034013, https://doi.org/10.1088/1748-9326/7/3/034013, 2012.
Sellitto, P., Salerno, G., La Spina, A., Caltabiano, T., Terray, L.,
Gauthier, P. J., and Briole, P.: A novel methodology to determine volcanic
aerosols optical properties in the UV and NIR and Ångström
parameters using Sun photometry, J. Geophys. Res.-Atmos., 122, 9803–9815,
2017.
Sellitto, P., Spampinato, L., Salerno, G., and La Spina, A.: Aerosol Optical
Properties of Pacaya Volcano Plume Measured with a Portable Sun-Photometer,
Geosci., 8, 36, https://doi.org/10.3390/geosciences8020036, 2018.
Shaw, G. E.: Sun photometry, B. Am. Meteorol. Soc., 64, 4–10, 1983.
Shikwambana, L. and Sivakumar, V.: Long-range transport of volcanic aerosols
over South Africa: a case study of the Calbuco volcano eruption in Chile
during April 2015, S. Afr. Goegr. J., 100, 349–363
https://doi.org/10.1080/03736245.2018.1498383, 2018.
Shi, Y., Zhang, J., Reid, J. S., Holben, B., Hyer, E. J., and Curtis, C.: An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation, Atmos. Chem. Phys., 11, 557–565, https://doi.org/10.5194/acp-11-557-2011, 2011.
Solomon, S., Portmann, R. W., Garcia, R. R., Thomason, L. W., Poole, L. R.,
and McCormick, M. P.: The role of aerosol variations in anthropogenic ozone
depletion at northern midlatitudes, J. Geophys. Res.-Atmos., 101, 6713–6727, 1996.
Solomon, S.: Stratospheric ozone depletion.: A review of concepts and
history, Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999.
Solomon, S., Portmann, R. W., Sasaki, T., Hofmann, D. J., and Thompson, D.
W. J.: Four decades of ozonesonde measurements over Antarctica, J. Geophys. Res.-Atmos., 110, D21311, https://doi.org/10.1029/2005JD005917, 2005.
Solomon, S., Daniel, J. S., Neely III, R. R., Vernier, J.-P., Dutton, E. G.,
and Thomason, L. W.: The persistently variable “Background” stratospheric
aerosol layer and global climate change, Science, 333, 866–870, https://doi.org/10.1126/science.1206027, 2011.
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., and
Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science, 252,
269–274, https://doi.org/10.1126/science.aae0061, 2016.
Sparks, R. S. J., Bursik, M. I., Carey, S. N., Gilbert, J. S., Glaze, L. S., Sigurdsson, H., and Woods, A. W.: Volcanic Plumes, John Wiley, Chichester, UK, 117–140, 1997.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
Stone, K. A., Solomon, S., Kinnison, D. E., Pitts, M. C., Poole, L. R.,
Mills, M. J., Schmidt, A., Neely III, R. R., Ivy, D., Schwartz, M. J.,
Vernier, J. P., Johnson, B. J., Tully, M. B., Klekocius, A. R.,
König-Langlo, G., and Hagiya, S.: Observing the impact of Calbuco
volcanic aerosols on south polar ozone depletion in 2015, J. Geophys. Res.-Atmos., 122,
11862–11879, https://doi.org/10.1002/2017JD026987, 2017.
Stunder, B. J. B., Heffter, J. L., and Draxler, R. R.: Airborne volcanic ash
forecast area reliability, Weather. Forecast., 22, 1132–1139, https://doi.org/10.1175/WAF1042.1, 2007.
Tie, X. and Brasseur, G.: The response of stratospheric ozone to volcanic
eruptions: Sensitivity to atmospheric chlorine loading, Geophys. Res. Lett., 22, 3035–3038, https://doi.org/10.1029/95GL03057, 1995.
Theys, N., DeSmedt, I., VanRoozendael, M., Froidevaux, L., Clarisse, L., and
Hendrick, F.: First satellite detection of volcanic OClO after the eruption
of Puyehue-Cordón Caulle, Geophys. Res. Lett., 41, 667–672, https://doi.org/10.1002/2013GL058416,
2014.
Thomason, L. W., Pitts, M. C., and Winker, D. M.: CALIPSO observations of stratospheric aerosols: a preliminary assessment, Atmos. Chem. Phys., 7, 5283–5290, https://doi.org/10.5194/acp-7-5283-2007, 2007.
Toth, T. D., Zhang, J., Campbell, J. R., Reid, J. S., Shi, Y., Johnson, R.
S., Sirmonv, A., Vaughan, M. A., and Winker, D. M.: Investigating enhanced
Aqua MODIS aerosol optical depth retrievals over the mid-to-high latitude
Southern Oceans through intercomparison with co-located CALIOP, MAN, and
AERONET data sets, J. Geophys. Res.-Atmos., 118, 4700–4714, 2013.
Tomasi, C., Vitale, V., and Tarrozi, L.: Sun-photometric measurements of
atmospheric turbidity variation a used by the Pinatubo aerosol cloud in the
Himalayan region during the summer periods of 1991 and 1992, Nouvo Cimento, 20, 61–88, 1997.
Torres, O., Chen, Z., Jethva, H., Ahn, C., Freitas, S. R., and Bhartia, P. K.: OMI and MODIS observations of the anomalous 2008–2009 Southern Hemisphere biomass burning seasons, Atmos. Chem. Phys., 10, 3505–3513, https://doi.org/10.5194/acp-10-3505-2010, 2010.
Trickl, T., Giehl, H., Jäger, H., and Vogelmann, H.: 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond, Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, 2013.
Tripathi, S. N., Dey, S., Chandel, A., Srivastava, S., Singh, R. P., and Holben,
B. N.: Comparison of MODIS and AERONET derived aerosol optical depth over the
Ganga Basin, India, Ann. Geophys., 23, 1093–1101, 2005.
Vanhellemont, F., Fussen, D., Mateshvili, N., Tétard, C., Bingen, C., Dekemper, E., Loodts, N., Kyrölä, E., Sofieva, V., Tamminen, J., Hauchecorne, A., Bertaux, J.-L., Dalaudier, F., Blanot, L., Fanton d'Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Saavedra, L.: Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002–2008, Atmos. Chem. Phys., 10, 7997–8009, https://doi.org/10.5194/acp-10-7997-2010, 2010.
Vermote, E. F., El Saleous, N., Justice, C. O., Kaufman, Y. J., Privette, J.
L., Remer, L., Roger., J. C., and Tanre, D.: Atmospheric correction of
visible to middle-infrared EOS-MODIS data over land surfaces: Background,
operational algorithm and validation, J. Geophys. Res.-Atmos., 102, 17131–17141, 1997.
Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J.,
Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and
Vargas, F.: Major influence of tropical volcanic eruptions on the
stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563, 2011.
Vernier, J. P., Fairlie, T. D., Deshler, T., Natarajan, M., Knepp, T.,
Foster, K., Weinhold., F. G., Bedka, K. M., Thomason, L., and Trepte, C.: In
situ and space-based observations of the Kelud volcanic plume: The
persistence of ash in the lower stratosphere, J. Geophys. Res.-Atmos., 121, 11–104, 2016.
Watson, I. M., Oppenheimer, C., Voight, B., Francis, P. W., Clarke, A.,
Stix, J., Miller, A., Pyle, D. M., Burton, M. R., Young, S. R., Norton,
G., Loughlin, S., Darroux, B., and Staff, M. V. O.: The relationship between
degassing and ground deformation at Soufriere Hills Volcano, Montserrat,
J. Volcanol. Geoth. Res., 98, 117–126, 2000.
Watson, I. M. and Oppenheimer, C.: Photometric observations of Mt. Etna's
different aerosol plumes, Atmos. Environ., 35, 3561–3572, 2001.
Webster, H. N., Thomson, D. J., Johnson, B. T., Heard, I. P. C., Turnbull,
K., Marenco, F., Kristiansen, N. I., Dorsey, J., Minikin, A., Weinzierl,
B., Schumann, U., Sparks, R. S. J., Loughlin, S. C., Hort, M. C., Leadbetter,
S. J., Devenish, B. J., Manning, A. J., Witham, C. S., Haywood, J. M., and
Golding, B. W.: Operational prediction of ash concentrations in the distal
volcanic cloud from the 2010 Eyjafjallajökull eruption, J. Geophys. Res.-Atmos., 117, D00U08, https://doi.org/10.1029/2011JD016790, 2012.
Winker, D. M., Pelon J., Coakley Jr., J. A., Ackerman, S. A., Charlson, R. J.,
Colarco, P. R., and Wielicki, B. A.: The CALIPSO Mission: A Global 3D View of
Aerosols and Clouds, B. Am. Meteorol. Soc., 91, 1211–1230, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013.
Young, R., Houben, H., and Toon, O.: Radiatively forced dispersion of the
Mt. Pinatubo volcanic cloud and induced temperature perturbation in the
stratosphere during the first few months following the eruption,
Geophys. Res. Lett., 21, 369–372, 1994.
Zhang, J. and Reid, J. S.: MODIS aerosol product analysis for data
assimilation: Assessment of over-ocean level 2 aerosol optical thickness
retrievals, J. Geophys. Res.-Atmos., 111, D22207, https://doi.org/10.1029/2005JD006898, 2006.
Zuev, V. V., Nevzorov, A. V., Pravdin, V. L., Savelieva, E. S., Gerasimov, V. V., and Burlakov, V. D.: 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia), 2017.
Zhu, Y., Toon, O. B., Kinnison, D., Harvey, V. L., Mills, M. J., Bardeen, C.
G., Pitts, M., Bègue, N., Renard, J. B., Berthet, G., and Jégou,
F.: Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone
Depletion After the Mount Calbuco Eruption in 2015, J. Geophys. Res.-Atmos., 123, 12–308, 2018.
Zuev, V. V., Savelieva, E. S., and Parezheva, T. V.: Study of the Possible
Impact of the Calbuco Volcano Eruption on the Abnormal Destruction of
Stratospheric Ozone over the Antarctic in Spring 2015, Atmos. Ocean. Opt., 31, 665–669, 2018.
Short summary
This study investigates the influence of the 2015 Calbuco eruption (41.2°S, 72.4°W; Chile) on the total columnar aerosol optical properties in the Southern Hemisphere. The well-known technique of sun photometry was applied to the investigation of the transport and the spatio-temporal evolution of the optical properties of the volcanic plume. The CIMEL sun photometer measurements performed over six South American and three African sites were statistically analyzed.
This study investigates the influence of the 2015 Calbuco eruption (41.2°S, 72.4°W; Chile) on...