Chen, S.-H., Kivelson, M. G., Gosling, J. T., Walker, R. J., and Lazarus, A.
J.: Anomalous aspects of magnetosheath flow and of the shape and
oscillations of the magnetopause during an interval of strongly northward
interplanetary magnetic field, J. Geophys., 98, 5727–5742, 1993.
Dai, L.: Collisionless Magnetic Reconnection via Alfvén Eigenmodes, Phys.
Rev. Lett., 102, 245003, https://doi.org/10.1103/PhysRevLett.102.245003,
2009.
Dai, L.: Structures of Hall Fields in Asymmetric Magnetic Reconnections, J.
Geophys. Res.-Space, 123, 7332–7341, https://doi.org/10.1029/2018JA025251, 2018.
Dai, L., Wang, C., Zhang, Y., Lavraud, B., Burch, J., Pollock, C., and
Torbert, R. B.: Kinetic Alfvén wave explanation of the Hall fields in
magnetic reconnection, Geophys. Res. Lett., 44, 634–640,
https://doi.org/10.1002/2016GL071044, 2017.
Dungey, J. W.: Interplanetary magnetic field and auroral zones, Phys. Rev.
Lett., 6, 47–48, 1961.
Farrugia, C. J., Gratton, F. T., Gnavi, G., Torbert, R. B., and Wilson, L. B.: A
vortical dawn flank boundary layer for near-radial IMF: Wind observations on
24 October 2001, J. Geophys. Res.-Space, 119, 4572–4590, https://doi.org/10.1002/2013JA019578, 2014.
Fujimoto, M., Terasawa, T., Mukai, T., Saito, Y., Yamamoto, T., and Kokubun,
S.: Plasma entry from the flanks of the near-Earth magnetotail: Geotail
observations, J. Geophys. Res., 103, 4391–4408, 1998.
Fujimoto, M., Tonooka, T., and Mukai, T.: Vortex-like fluctuations in the
magnetotail flanks and their possible roles in plasma transport, in: The
Earth's Low-Latitude Boundary Layer, Geophys. Monogr. Ser., edited
by: Newell, P. T. and Onsager, T., American Geophysical Union, Washington, DC, Vol. 133, 241–251, 2003.
Goddard Space Flight Center: Coordinated Data Analysis Web (CDAWeb), available at:
http://cdaweb.gsfc.nasa.gov/, last access: 22 February 2020.
Grygorov, K., Němeček, Z., Šafránková, J., Přech,
L., Pi, G., and Shue, J.-H.: Kelvin-Helmholtz wave at the subsolar magnetopause
boundary layer under radial IMF, J. Geophys. Res.-Space, 121,
9863–9879, https://doi.org/10.1002/2016JA023068, 2016.
Hasegawa, A.: Plasma instabilities and Non-linear effects, Springer-Verlag,
New York, 125–132, 1975.
Hasegawa, H., Fujimoto, M., Phan, T.-D., Rème, H., Balogh, A., Dunlop,
M. W., Hashimoto, C., and TanDokoro, R.: Transport of solar wind into
Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature,
430, 755–758, https://doi.org/10.1038/nature02799, 2004.
Hasegawa, H., Fujimoto, M., Takagi, K., Saito, Y., Mukai, T., and Rème,
H.: Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at
the flank magnetopause, J. Geophys. Res., 111, A09203,
https://doi.org/10.1029/2006JA011728, 2006.
Hasegawa, H., Retinò, A., Vaivads, A., Khotyaintsev, Y., André, M.,
Nakamura, T. K. M., Teh, W. –L., Sonnerup, B. U. Ö., Schwartz, S. J.,
Seki, Y., Fujimoto, M., Saito, Y., Rème, H., and Canu, P.:
Kelvin-Helmholtz waves at the Earth's magnetopause: Multiscale development
and associated reconnection, J. Geophys. Res., 114, A12207,
https://doi.org/10.1029/2009JA014042, 2009.
Hwang, K.-J, Kuznetsova, M. M., Sahraoui, F., Goldstein, M. L., Lee, E., and
Parks, G. K.: Kelvin-Helmholtz waves under southward interplanetary magnetic
field, J. Geophys. Res., 116, A08210, https://doi.org/10.1029/2011JA016596, 2011.
Hwang, K.-J., Goldstein, M. L., Kuznetsova, M. M., Wang, Y., Vinas, A. F.,
and Sibeck, D. G.: The first in situ observation of Kelvin-Helmholtz waves
at high-latitude magnetopause during stongly dawnward interplanetary
magnetic field conditions, J. Geophys. Res., 117, A08233, https://doi.org/10.1029/2011JA017256, 2012.
Kavosi, S. and Raeder, J.: Ubiquity of Kelvin-Helmholtz waves at Earth's
magnetopause, Nat. Commun., 6, 7019, https://doi.org/10.1038/ncomms8019, 2015.
Kawano, H., Kokubun, S., Yamamoto, Y., Tsuruda, K., Hayakawa, H., Nakamura,
M., Okada, T., Matsuoka, A., and Nishida, A.: Magnetopause characteristics
during a four-hour interval of multiple crossings observed with GEOTAIL,
Geophys. Res. Lett., 21, 2895–2898, 1994.
Kivelson, M. G. and Chen, S. H.: The magnetopause: Surface waves and
instabilities and their possible dynamic consequences, in: Physics of the
Magnetopause, Geophys. Monogr. Ser., edited by: Song, P., Sonnerup,
B. O. Ü., and Thomsen, M. F., American Geophysical Union, Washington, DC, Vol. 90, 257–268, 1995.
Li, W. Y., André, M., Khotyaintsev, Y. V., Vaivads, A., Graham, D. B.,
Toledo-Redondo, S., and Strangeway, R. J.: Kinetic evidence of magnetic
reconnection due to Kelvin-Helmholtz waves, Geophys. Res. Lett., 43,
5635–5643, https://doi.org/10.1002/2016GL069192, 2016.
Masson, A. and Nykyri, K.: Kelvin-Helmholtz Instability: Lessons Learned
and Ways Forward, Space Sci. Rev.,
214, 71–89, https://doi.org/10.1007/s11214-018-0505-6, 2018.
Matsumoto, Y. and Hoshino, M.: Onset of turbulence induced by a
Kelvin-Helmholtz vortex, Geophys. Res. Lett., 31, L02807, https://doi.org/10.1029/2003GL018195, 2004.
McFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott,
B., Turin, P., Marckwordt, M., and Angelopoulos, V.: The THEMIS ESA plasma
instrument and in-flight calibration, Space Sci. Rev., 141, 277–302,
https://doi.org/10.1007/s11214-008-9440-2, 2008.
Miura, A.: Dependence of the magnetopause Kelvin-Helmholtz instability on
the orientation of the magnetosheath magnetic field, Geophys. Res. Lett.,
22, 2993–2996, 1995.
Moore, T. W., Nykyri, K., and Dimmock, A. P.: Cross scale energy transport in
space plasmas, Nat. Phys., 12, 1164–1169, https://doi.org/10.1038/nphys3869, 2016.
Mozer, F. S., Hayakawa, H., Kokubun, S., Nakamura, M., Okada, T., Yamamoto,
T., and Tsuruda, K.: The morningside low-latitude boundary layer as
determined from electric field and magnetic field measurements on Geotail,
Geophys. Res. Lett., 21, 2983–2886, 1994.
Nakamura, T. K. M., Hayashi, D., and Fujimoto, M.: Decay of MHD-Scale
Kevin-Helmholtz Vortices Mediated by Parasitic Electron Dynamics, Phys. Rev.
Lett., 92, 145001, https://doi.org/10.1103/PhysRevLett.92.14501, 2004.
Nakamura, T. K. M., Eriksson, S., Hasegawa, H., Zenitani, S., Li, W. Y.,
Genestreti, K. J., Nakamura, R., and Daughton, W.: Mass and Energy Transfer
across the Earth's Magnetopause Caused by Vortex-Induced Reconnection, J.
Geophys. Res.-Space, 122, 11505–11522, https://doi.org/10.1002/2017JA024346,
2017.
Nykyri, K. and Otto, A.: Plasma transport at the magnetospheric boundary
due to reconnection in Kelvin-Helmholtz vortices, Geophys. Res. Lett., 28,
3565–3568, 2001.
Nykyri, K., Otto, A., Lavraud, B., Mouikis, C., Kistler, L. M., Balogh, A., and Rème, H.: Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank, Ann. Geophys., 24, 2619–2643, https://doi.org/10.5194/angeo-24-2619-2006, 2006.
Otto, A. and Fairfield, D. H.: Kelvin-Helmholtz instability at the
magnetotail boundary: MHD simulation and comparison with Geotail
observations, J. Geophys. Res., 105, 21175–21190, 2000.
Sckopke, N., Paschmann, G., Haerendel, G., Sonnerup, B. U. Ö., Bame, S.
J., Forbes, T. G., Hones Jr., E. W., and Russell, C. T.: Structure of the Low-
Latitude Boundary Layer, J. Geophys. Res., 86, 2099–2110, 1981.
Sergeev, V. A., Sormakov, D. A., Apatenkov, S. V., Baumjohann, W., Nakamura, R., Runov, A. V., Mukai, T., and Nagai, T.: Survey of large-amplitude flapping motions in the midtail current sheet, Ann. Geophys., 24, 2015–2024, https://doi.org/10.5194/angeo-24-2015-2006, 2006.
Shue, J.-H., Song, P., Russell, C. T, Steinberg, J. T., Chao, J. K.,
Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R.,
and Kawano, H.: Magnetopause location under extreme solar wind conditions,
J. Geophys. Res., 103, 17691–17700, 1998.
Sibeck, D. G.: Transient event in the Outer magnetosphere: boundary waves or
flux transfer event?, J. Geophys. Res., 97, 4009–4026, 1992.
Song P. and Russell, C. T.: Model of the formation of the
low-latitude-boundary-layer for strongly northward interplanetary magnetic
field, J. Geophys. Res., 97, 1411–1420, https://doi.org/10.1029/91JA02377, 1992.
Southwood, D. J.: Magnetopause Kelvin-Helmholtz instability, in:
Magnetosphere Boundary Layers, edited by: Battrick, B. and Mort, J.,
European Space Agency Scientific and Technical Publications Branch,
Noordwijk, the Netherlands, 357–364, 1979.
Takagi, K., Hashimoto, C., Hasegawa, H., Fujimoto, M., and TanDokoro, R.: Kelvin-Helmholtz instability in a magnetotail flank-like geometry: Three-dimensional MHD simulations, J. Geophys. Res., 111, A08202, https://doi.org/10.1029/2006JA011631, 2006.
Tang, B. B., Wang, C., and Li, W. Y.: The magnetosphere under the radial
interplanetary magnetic field: A numerical study, J. Geophys. Res.-Space, 118, 7674–7682, https://doi.org/10.1002/2013JA019155, 2013.
Walsh, B. M., Thomas, E. G., Hwang, K.-H., Baker, J. B. H., Ruohoniemi, J.
M., and Bonnell, J. W.: Dense plasma and Kelvin-Helmholtz waves at Earth's
dayside magnetopause, J. Geophys. Res.-Space, 120, 5560–5573, https://doi.org/10.1002/2015JA021014, 2015.
Yan, G. Q., Shen, C., Liu, Z. X., Carr, C. M., Rème, H., and Zhang, T. L.: A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations, Ann. Geophys., 23, 2961–2966, https://doi.org/10.5194/angeo-23-2961-2005, 2005.
Yan, G. Q., Mozer, F. S., Shen, C., Chen, T., Parks, G. K., Cai, C. L.,
and McFadden, J. P.: Kelvin-Helmholtz Vortices observed by THEMIS at the
duskside of the magnetopause under southward IMF, Geophys. Res. Lett., 41,
4427–4434, https://doi.org/10.1002/2014GL060589, 2014.