Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-1123-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-38-1123-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An inter-hemispheric seasonal comparison of polar amplification using radiative forcing of a quadrupling CO2 experiment
Fernanda Casagrande
CORRESPONDING AUTHOR
Earth System Numerical Modeling Division, National Institute for Space Research (INPE), 12630-000 Cachoeira Paulista, Sao Paulo, Brazil
Ronald Buss de Souza
Earth System Numerical Modeling Division, National Institute for Space Research (INPE), 12227-010 José dos Campos, Brazil
Paulo Nobre
Earth System Numerical Modeling Division, National Institute for Space Research (INPE), 12630-000 Cachoeira Paulista, Sao Paulo, Brazil
Andre Lanfer Marquez
Earth System Numerical Modeling Division, National Institute for Space Research (INPE), 12630-000 Cachoeira Paulista, Sao Paulo, Brazil
Related authors
No articles found.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Vinicius Buscioli Capistrano, Paulo Nobre, Sandro F. Veiga, Renata Tedeschi, Josiane Silva, Marcus Bottino, Manoel Baptista da Silva Jr., Otacílio Leandro Menezes Neto, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Yoshio Kubota, Julio Pablo Reyes Fernandez, Emanuel Giarolla, Jessica Vial, and Carlos A. Nobre
Geosci. Model Dev., 13, 2277–2296, https://doi.org/10.5194/gmd-13-2277-2020, https://doi.org/10.5194/gmd-13-2277-2020, 2020
Short summary
Short summary
This work represents the product of our recent efforts to develop a Brazilian climate model and helps address some scientific issues on the frontier of knowledge (e.g., cloud feedback studies). The BESM results show climate sensitivity and thermodynamical responses similar to a CMIP5 ensemble. More than that, BESM has the objective of being an additional climate model with the ability to reproduce changes that are physically understood in order to study the global climate system.
Sandro F. Veiga, Paulo Nobre, Emanuel Giarolla, Vinicius Capistrano, Manoel Baptista Jr., André L. Marquez, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Kubota, and Carlos A. Nobre
Geosci. Model Dev., 12, 1613–1642, https://doi.org/10.5194/gmd-12-1613-2019, https://doi.org/10.5194/gmd-12-1613-2019, 2019
Short summary
Short summary
This study evaluates the Brazilian Earth System Model with coupled ocean–atmosphere version 2.5 (BESM-OA2.5) and the effectiveness of reproducing the main characteristics of the atmospheric and oceanic variability in a real-life-based scenario of greenhouse gas increase (the CMIP5 historical protocol). The evaluation specifically focuses on how the model simulates the mean climate state, as well as the most important large-scale climate patterns.
Mabel Costa Calim, Paulo Nobre, Peter Oke, Andreas Schiller, Leo San Pedro Siqueira, and Guilherme Pimenta Castelão
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-5, https://doi.org/10.5194/gmd-2018-5, 2018
Revised manuscript not accepted
Short summary
Short summary
A new tool inspired on tides is introduced. The Spectral Taylor Diagram designed for evaluating and monitoring models performance in frequency domain calculates the degree of correspondence between simulated and observed fields for a given frequency (or a band of frequencies). It's a powerful tool to detect co-oscillating patterns in multi scale analysis, without using filtering techniques.
Cited articles
Alexeev, V. A., Langen, P. L., and Bates, J. R.: Polar amplification of
surface warming on an aquaplanet in “ghost forcing” experiments without
sea ice feedbacks, Clim. Dynam., 24, 655–666,
https://doi.org/10.1007/s00382-005-0018-3, 2005.
Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.: Arctic Oscillation
or North Atlantic Oscillation?, J. Climate, 14, 3495–3507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2, 2001.
Bader, D. C., Leung, R., Taylor, M., McCoy, R. B.: E3SM-Project
E3SM1.0 model output prepared for CMIP6 CMIP
Abrupt-4×CO2, Version 20200701, Earth System Grid
Federation, https://doi.org/10.22033/ESGF/CMIP6.4491, 2019.
Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., and Li, Y.: The flexible global ocean-atmosphere-land system model,
spectral version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576, 2013.
Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A.: Role of Polar
Amplification in Long-Term Surface Air Temperature Variations and Modern
Arctic Warming, J. Climate, 23, 3888–3906, https://doi.org/10.1175/2010JCLI3297.1,
2010.
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N.,
Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R.,
Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies,
S., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model:
description, control climate and evaluation, Aust. Meteorol. Ocean., 63, 41–64,
https://doi.org/10.22499/2.6301.004, 2013.
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., and
Katsman, C. A.: Important role for ocean warming and increased ice-shelf
melt in Antarctic sea-ice expansion, Nat. Geosci., 6, 376–379,
https://doi.org/10.1038/ngeo1767, 2013.
Bintanja, R., van Oldenborgh, G. J., and Katsman, C. A.: The effect of
increased fresh water from Antarctic ice shelves on future trends in
Antarctic sea ice, Ann. Glaciol., 56, 120–126,
https://doi.org/10.3189/2015AoG69A001, 2015.
Capistrano, V. B., Nobre, P., Veiga, S. F., Tedeschi, R., Silva, J., Bottino, M., da Silva Jr., M. B., Menezes Neto, O. L., Figueroa, S. N., Bonatti, J. P., Kubota, P. Y., Fernandez, J. P. R., Giarolla, E., Vial, J., and Nobre, C. A.: Assessing the performance of climate change simulation results from BESM-OA2.5 compared with a CMIP5 model ensemble, Geosci. Model Dev., 13, 2277–2296, https://doi.org/10.5194/gmd-13-2277-2020, 2020.
Casagrande, F.: Sea ice study and Arctic Polar Amplification using BESM
model, PhD thesis, available at:
http://mtc-m21b.sid.inpe.br/col/sid.inpe.br/mtc-m21b/2016/05.12.04.17/doc/publicacao.pdf (last access: 1 October 2020), 2016.
Casagrande, F., Nobre, P., de Souza, R. B., Marquez, A. L., Tourigny, E.,
Capistrano, V., and Mello, R. L.: Arctic Sea Ice: Decadal Simulations and
Future Scenarios Using BESM-OA,
Atmospheric and Climate Sciences, 06, 351–366,
https://doi.org/10.4236/acs.2016.62029, 2016.
Casagrande, F., Souza, R. B., Nobre, P., and Lanfer Marquez, A.:.
Brazilian Earth System Model: CMIP5 Sea ice concentration and Air Temperature data (Data set),
Zenodo, https://doi.org/10.5281/zenodo.4072353, 2020.
Chylek, P., Li, J., Dubey, M. K., Wang, M., and Lesins, G.: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2, Atmos. Chem. Phys. Discuss., 11, 22893–22907, https://doi.org/10.5194/acpd-11-22893-2011, 2011.
Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A., and Cherry, J. E.: Asymmetric seasonal temperature trends, Geophys. Res. Lett., 39, https://doi.org/10.1029/2011GL050582, 2012.
Collier, M. and Uhe, P.: CMIP5 datasets from the ACCESS1.0 and ACCESS1.3
coupled climate models, CAWCR Technical Report, The Centre for Australian Weather and Climate Research, 2012.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C. D, Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J:: Evaluation of the HadGEM2 model, Tech. Note,
HCTN 74, Met Off., Hadley Cent., Exeter, UK, 2008.
Coumou, D., Di Capua, G., Vavrus, S., Wang, L., and Wang, S.: The influence
of Arctic amplification on mid-latitude summer circulation, Nat.
Commun., 9, 1–12, 2018.
Cvijanovic, I., Caldeira, K., and MacMartin, D. G.: Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere
climate, Environ. Res. Lett., 10, 044020, https://doi.org/10.1088/1748-9326/10/4/044020, 2015.
Delworth T. L., Broccoli, A. J., Rosati A., Stouffer, R. J., Balaji V., Beesley, J. A., Cooke W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T. , Griffies, S. M., Gudgel R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W. , Klein, S. A., Knutson, T. R., Kushner P. J., Langenhorst, A. r., Lee, H-c., Lin , S-j., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Joellen, R., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J. , Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T.,
Wyman, B., Zeng F., and Zhangc, R.: GFDL's CM2 global coupled climate models.
Part I: Formulation and simulation characteristics, J. Climate, 19,
643–674, 2006.
Dethloff, K., Handorf, D., Jaiser, R., Rinke, A., and Klinghammer, P.:
Dynamical mechanisms of Arctic amplification: Dynamical mechanisms of Arctic
amplification, Ann. N.Y. Acad. Sci., 1436, 184–194,
https://doi.org/10.1111/nyas.13698, 2019.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., and DiMego, G.:
Implementation of a 527 new grid-scale cloud and precipitation scheme in the
NCEP Eta model, American Meteor Society, 19th Conf. on weather Analysis and
Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283, 2002.
Fiedler, S., Stevens, B., Wieners, K. H., Giorgetta, M.,
Reick, C., Jungclaus, J., Esch, M., Bittner, M.,
Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V.,
Haak, H., de Vrese, P., Lorenz, S., Raddatz, T.,
Mauritsen, T., von Storch, J-S., Mikolajewicz, U., Behrens,
J., Brovkin, V., Claussen, M., Crueger, T., Fast, I.,
Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne,
S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D.,
Meraner, K., Modali, K., Müller, W., Nabel, J.,
Notz, D., Peters, K., Pincus, R., Pohlmann, H., Pongratz,
J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U.,
Six, K., Voigt, A., and Roeckner, E.,: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 RFMIP piClim-control, Version 20200701 Earth
System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.6662, 2019.
Figueroa, S. N., Bonatti, J. P., Kubota, P. Y., Grell, G. A., Morrison, H.,
Barros, S. R. M., Fernandez, J. P. R., Ramirez, E., Siqueira, L., Luzia, G.,
Silva, J., Silva, J. R., Pendharkar, J., Capistrano, V. B., Alvim, D. S.,
Enoré, D. P., Diniz, F. L. R., Satyamurti, P., Cavalcanti, I. F. A.,
Nobre, P., Barbosa, H. M. J., Mendes, C. L., and Panetta, J.: The Brazilian
Global Atmospheric Model (BAM): Performance for Tropical Rainfall
Forecasting and Sensitivity to Convective Scheme and Horizontal Resolution,
Weather Forecast., 31, 1547–1572, https://doi.org/10.1175/WAF-D-16-0062.1, 2016.
Fogli, P. G., Iovino, D., and Lovato, T.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 OMIP omip2, Version 20200701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.13236, 2019.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Giarolla, E., Siqueira, L. S. P., Bottino, M. J., Malagutti, M., Capistrano,
V. B., and Nobre, P.: Equatorial Atlantic Ocean dynamics in a coupled
ocean–atmosphere model simulation, Ocean Dynam., 65, 831–843,
https://doi.org/10.1007/s10236-015-0836-8, 2015.
Giorgetta, M. A., Jungclaus, J., Reick, C. H. , Legutke, S., Bader, J., Bottinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan F., Raddatz T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider,J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to
2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project
phase 5, J. Adv. Model. Earth Sy., 5,
572–597, 2013.
Goosse, H. and Renssen, H.: A two-phase response of the Southern Ocean to an
increase in greenhouse gas concentrations, Geophys. Res. Lett., 28,
3469–3472, https://doi.org/10.1029/2001GL013525, 2001.
Graversen, R. G. and Wang, M.: Polar amplification in a coupled climate
model with locked albedo, Clim. Dynam., 33, 629–643,
https://doi.org/10.1007/s00382-009-0535-6, 2009.
Graversen, R. G., Langen, P. L., and Mauritsen, T.: Polar Amplification in
CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks, J.
Climate, 27, 4433–4450, https://doi.org/10.1175/JCLI-D-13-00551.1, 2014.
Graversen, R. G., Mauritsen, T., Tjernström, M., Källén, E., and
Svensson, G.: Vertical structure of recent Arctic warming, Nature,
451, 53–56, https://doi.org/10.1038/nature06502, 2008.
Griffies, S. M.: Elements of MOM4p1, NOAA/Geophysical Fluid Dynamics
Laboratory Ocean Group Tech. Rep. 6, 444 pp., 2009.
Griffies, S. M.: Elements of the modular ocean model (MOM), GFDL Ocean Group Tech. Rep., 7, Princeton, NJ, 2012.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232,
https://doi.org/10.1007/s00382-003-0332-6, 2003.
Honda M., Inoue J., and Yamane, S.: Influence of low Arctic sea-ice minima on
anomalously cold Eurasian winters, Geophys. Res. Lett.,
36, 262–275, 2009.
Hunke, E. C. and Dukowicz, J. K.: An Elastic-Viscous-Plastic Model for Sea
Ice Dynamics, J. Phys. Oceanogr., 27, 1849–1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for the
WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Kumar, A., Perlwitz, J., Eischeid, J., Quan, X., Xu, T., Zhang, T.,
Hoerling, M., Jha, B., and Wang, W.: Contribution of sea ice loss to Arctic
amplification: Sea ice loss and Arctic Amplification, Geophys. Res. Lett.,
37, L21701, https://doi.org/10.1029/2010GL045022, 2010.
Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou, T., Liu, L., Wang, L., Pu, Y., Chen, X., Chen, L., Xie, Z., Liu, H., Zhang, L., Huang, X., Feng, T. Zheng, W., Xia, K., Liu, H., Liu, J., Wang, Y., Wang, L., Jia, B., Xie, F., Wang, B., Zhao, S., Yu, Z., Zhao, B., Wei, J.: The Flexible Global Ocean–Atmosphere–Land 75 System Model Grid-Point Version 3 (FGOALS-g3): Description and Evaluation, J. Adv. Model Earth Sy., 2020: The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): Description and Evaluation, J.
Adv. Model Earth Sy., 12, e2019MS002012, https://doi.org/10.1029/2019MS002012, 2020.
Lu, J. and Cai, M.: Seasonality of polar surface warming amplification in
climate simulations, Geophys. Res. Lett., 36, L16704,
https://doi.org/10.1029/2009GL040133, 2009.
Manabe, S., Wetherald, R. T., Milly, P. C. D., Delworth, T. L., and Stouffer,
R. J.: Century-Scale Change in Water Availability: CO2-Quadrupling
Experiment, Climatic Change, 64, 59–76, 2004.
Mann, M. E., Schmidt, G. A., Miller, S. K., and LeGrande, A. N.: Potential
biases in inferring Holocene temperature trends from long-term borehole
information, Geophys. Res. Lett., 36, L05708, https://doi.org/10.1029/2008GL036354, 2009.
Marshall, J., Armour, K. C., Scott, J. R., Kostov, Y., Hausmann, U.,
Ferreira, D., Shepherd, T. G., and Bitz, C. M.: The ocean's role in polar
climate change: asymmetric Arctic and Antarctic responses to greenhouse gas
and ozone forcing, Philos. T. R. Soc. A, 372,
20130040, https://doi.org/10.1098/rsta.2013.0040, 2014.
Masson-Delmotte, V., Kageyama, M., Braconnot, P., Charbit, S., Krinner, G.,
Ritz, C., and Gladstone, R. M.: Past and future polar amplification of climate change: climate model intercomparisons and ice-core
constraints, Clim. Dynam., 26, 513–529, 2006.
Mori, M., Watanabe, M., Shiogama, H., Inoue, J., and Kimoto, M.: Robust Arctic sea-ice influence on
the frequent Eurasian cold winters in past decades, Nat. Geosci.,
7, 869–873, 2014.
Nobre, P., Siqueira, L. S. P., de Almeida, R. A. F., Malagutti, M.,
Giarolla, E., Castelão, G. P., Bottino, M. J., Kubota, P., Figueroa, S.
N., Costa, M. C., Baptista, M., Irber, L., and Marcondes, G. G.: Climate
Simulation and Change in the Brazilian Climate Model, J. Climate, 26,
6716–6732, https://doi.org/10.1175/JCLI-D-12-00580.1, 2013.
O'ishi, R., Abe-Ouchi, A., Prentice, I. C., and Sitch, S.: Vegetation dynamics and plant CO2 responses as positive feedbacks in a greenhouse world, Geophys. Res. Lett., 36, L11706, https://doi.org/10.1029/2009GL038217, 2009.
Pedersen, R. A., Cvijanovic, I., Langen, P. L., and Vinther, B. M.: The impact of regional Arctic sea ice loss on atmospheric circulation and the
NAO, J. Climate, 29, 889–902, https://doi.org/10.1175/JCLI-D-15-0315.1, 2019.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
https://doi.org/10.1038/ngeo2071, 2014.
Polyakov, I. V., Alexeev, V. A., Belchansky, G. I., Dmitrenko, I. A.,
Ivanov, V. V., Kirillov, S. A., Korablev, A. A., Steele, M., Timokhov, L. A.,
and Yashayaev, I.: Arctic Ocean Freshwater Changes over the Past 100 Years
and Their Causes, J. Climate, 21, 364–384, https://doi.org/10.1175/2007JCLI1748.1,
2008.
Polyakov, I. V., Timokhov, L. A., Alexeev, V. A., Bacon, S., Dmitrenko, I.
A., Fortier, L., Frolov, I. E., Gascard, J. C., Hansen, E., Ivanov, V. V.,
Laxon, S., Mauritzen, C., Perovich, D., Shimada, K., Simmons, H. L.,
Sokolov, V. T., Steele, M., and Toole, J.: Arctic Ocean Warming Contributes
to Reduced Polar Ice Cap, J. Phys. Oceanogr., 40, 2743–2756,
https://doi.org/10.1175/2010JPO4339.1, 2010.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T.
M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291,
https://doi.org/10.1126/science.aai8204, 2017.
Rigor, I. G.: Response of Sea Ice to the Arctic Oscillation, J.
Climate, 15, 2648–2663, 2002.
Rong, X.: CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP 1pctCO2, Version 20200701, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.9701, 2019.
Salzmann, M.: The polar amplification asymmetry: role of Antarctic surface
height, Earth Syst. Dynam., 8, 323–336, https://doi.org/10.5194/esd-8-323-2017,
2017.
Schmidt, G. A. Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B., Canuto, V., Cheng, Y., Del Genio, A., Faluvegi, G., Friend, A. D. , Hall, T. M., Hu, Y., Kelley, M., Kiang, N. Y., Koch, D., Lacis, A. A., Lerner, J., Lo, K. K., Miller, R. L., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Russell, G. L. , Sato, M., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., Thresher, D., and Yao, M.-S.: Present-day atmospheric simulations using GISS
ModelE: Comparison to in situ, satellite, and reanalysis data, J.
Climate, 19, 153–192, 2006.
Screen, J. A.: Climate science: far-flung effects of Arctic warming, Nat.
Geosci., 10, 253–254, 2017.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010.
Semtner, A. J.: A Model for the Thermodynamic Growth of Sea Ice I Numerical
Investigations of Climate, J. Phys. Oceanogr., 6, 27–37, 1976.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77,
85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6
CMIP amip, Version 20200701, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.3924, 2019.
Shu, Q., Song, Z., and Qiao, F.: Assessment of sea ice simulations in the CMIP5 models, The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015, 2015.
Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., Jung, T., Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Yoon, J.-H., and Zhang, X.: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, 2019.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6:
ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015,
2013.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M., Allen, S. K.,
Boschung, J., and Midgley, P. M.: Climate Change 2013: The physical
science basis. Contribution of working group I to the fifth assessment
report of IPCC the intergovernmental panel on climate change,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107415324, 2014.
Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M.,
Xie, S. P., Kim, D., McGregor, S., Zhang, W., Zhao, S., Cai, W., Dong, Y.,
and Jin, F. F.: Polar amplification dominated by local forcing and
feedbacks, Nat. Clim. Change, 8, 1076–1081,
https://doi.org/10.1038/s41558-018-0339-y, 2018.
Sundqvist, H. S., Zhang, Q., Moberg, A., Holmgren, K., Körnich, H., Nilsson, J., and Brattström, G.: Climate change between the mid and late Holocene in northern high latitudes – Part 1: Survey of temperature and precipitation proxy data, Clim. Past, 6, 591–608, https://doi.org/10.5194/cp-6-591-2010, 2010.
Swart, N. C. and Fyfe, J. C.: The influence of recent Antarctic ice sheet
retreat on simulated sea ice area trends: Antarctic Sea ice trends, Geophys.
Res. Lett., 40, 4328–4332, https://doi.org/10.1002/grl.50820, 2013.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M.,
Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V.,
Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von
Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP ssp126, Version 20200701, Earth
System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.3683, 2019.
Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP historical, Version 20200701, Earth System Grid
Federation, https://doi.org/10.22033/ESGF/CMIP6.5603, 2018.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K.
M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749,
https://doi.org/10.1038/ngeo1296, 2011.
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., and
Phillips, T.: Recent changes in Antarctic Sea Ice, Philos. T. R. Soc. A,
373, 20140163, https://doi.org/10.1098/rsta.2014.0163, 2015.
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., and Deb, P.: Unprecedented springtime retreat of Antarctic sea ice in
2016, Geophys. Res. Lett., 44, 6868–6875, 2017.
Van der Linden, E. C., Le Bars, D., Bintanja, R., and Hazeleger,
W.: Oceanic heat transport into the Arctic under high and low CO2
forcing, Clim. Dynam., 53, 4763–4780, https://doi.org/10.1007/S00382-019-04824-Y, 2019.
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney,
R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent Rapid
Regional Climate Warming on the Antarctic Peninsula, Climatic Change, 60,
243–274, https://doi.org/10.1023/A:1026021217991, 2013.
Veiga, S. F., Nobre, P., Giarolla, E., Capistrano, V., Baptista Jr., M., Marquez, A. L., Figueroa, S. N., Bonatti, J. P., Kubota, P., and Nobre, C. A.: The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: evaluation of its CMIP5 historical simulation, Geosci. Model Dev., 12, 1613–1642, https://doi.org/10.5194/gmd-12-1613-2019, 2019.
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin,
V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev,
N., Shestakova, A., and Emelina, S.: INM INM-CM4-8 model output prepared for CMIP6 CMIP piControl, Version 20200701, Earth System
Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5080, 2019.
Walsh, J. E.: Intensified warming of the Arctic: Causes and impacts on
middle latitudes, Global Planet. Change, 117, 52–63,
https://doi.org/10.1016/j.gloplacha.2014.03.003, 2014.
Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.: Improved climate simulation by MIROC5: Mean
states, variability, and climate sensitivity, J. Climate, 23,
6312–6335, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Winton, M.: A reformulated three-layer sea ice model, J.
Atmos. Ocean. Tech., 17, 525–531, 2000.
Winton, M.: Amplified Arctic climate change: What does surface albedo
feedback have to do with it?,
Geophys. Res. Lett., 33, L14803, https://doi.org/10.1029/2005GL025244, 2006.
Yang, X. Y., Fyfe, J. C., and Flato, G. M.: The role of poleward energy
transport in Arctic temperature evolution, Geophys. Res.
Lett., 37, L03701, https://doi.org/10.1029/2010GL042487, 2010.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H.,
Hirabara, M., Tanaka, T. y., Shindo, E., Tsujino, H., Makoto, D.,
Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., and
Kitoh, A.: A new global climate model of the Meteorological
Research Institute: MRI-CGCM3 – Model description and basic performance –
J. Meteorol. Soc. Jpn. Ser. II, 90, 23–64,
2012.
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida,
K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T.,
Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii,
M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP esm-hist, Version 20200701, Earth System
Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6807, 2019.
Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., and Huang, J.: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades, Nat. Clim. Change, 6, 1094–1099, 2016.
Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman,
R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J.,
Stevens, L., Vohralik, P., Mackallah, C., Sullivan, A.,
O'Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output
prepared for CMIP6 CMIP, Version 20200701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2288, 2019.
Short summary
Polar amplification is possibly one of the most important sensitive indicators of climate change. Our results showed that the polar regions are much more vulnerable to large warming due to an increase in atmospheric CO2 forcing than the rest of the world, particularly during the cold season. Despite the asymmetry in warming between the Arctic and Antarctic, both poles show systematic polar amplification in all climate models.
Polar amplification is possibly one of the most important sensitive indicators of climate...
Special issue