Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF1.490
IF 5-year value: 1.445
IF 5-year
1.445
CiteScore value: 2.9
CiteScore
2.9
SNIP value: 0.789
SNIP0.789
IPP value: 1.48
IPP1.48
SJR value: 0.74
SJR0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
index
88
h5-index value: 21
h5-index21
ANGEO | Articles | Volume 37, issue 1
Ann. Geophys., 37, 89–100, 2019
https://doi.org/10.5194/angeo-37-89-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Ann. Geophys., 37, 89–100, 2019
https://doi.org/10.5194/angeo-37-89-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Regular paper 01 Feb 2019

Regular paper | 01 Feb 2019

An improved pixel-based water vapor tomography model

Yibin Yao et al.

Viewed

Total article views: 1,371 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,050 299 22 1,371 26 23
  • HTML: 1,050
  • PDF: 299
  • XML: 22
  • Total: 1,371
  • BibTeX: 26
  • EndNote: 23
Views and downloads (calculated since 23 May 2018)
Cumulative views and downloads (calculated since 23 May 2018)

Viewed (geographical distribution)

Total article views: 1,173 (including HTML, PDF, and XML) Thereof 1,150 with geography defined and 23 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 27 Sep 2020
Publications Copernicus
Download
Short summary
In this paper, we propose an improved pixel-based water vapor tomography model, which uses layered optimal polynomial functions by adaptive training for water vapor retrieval. Under different scenarios, tomography results show that the new model outperforms the traditional one by reducing the root-mean-square error (RMSE), and this improvement is more pronounced, at 5.88 % in voxels without the penetration of GNSS rays. The improved model also has advantages in more convenient expression.
In this paper, we propose an improved pixel-based water vapor tomography model, which uses...
Citation