Articles | Volume 37, issue 4
https://doi.org/10.5194/angeo-37-455-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-455-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mercury's subsolar sodium exosphere: an ab initio calculation to interpret MASCS/UVVS observations from MESSENGER
Diana Gamborino
CORRESPONDING AUTHOR
Space Research and Planetary Sciences, Physics Institute, University of Bern, 3012 Bern, Switzerland
Audrey Vorburger
Space Research and Planetary Sciences, Physics Institute, University of Bern, 3012 Bern, Switzerland
Peter Wurz
Space Research and Planetary Sciences, Physics Institute, University of Bern, 3012 Bern, Switzerland
Related authors
No articles found.
Stefan Meyer, Marek Tulej, and Peter Wurz
Geosci. Instrum. Method. Data Syst., 6, 1–8, https://doi.org/10.5194/gi-6-1-2017, https://doi.org/10.5194/gi-6-1-2017, 2017
Short summary
Short summary
We developed a prototype of the Neutral Gas and Ion Mass spectrometer (NIM) of the Particle Environment Package (PEP) for the JUICE mission of ESA. NIM will be used to measure the chemical composition of the exospheres of the icy Jovian moons. The NIM prototype was successfully tested under realistic conditions and we find that the closed source behaves as expected within the JUICE mission phase velocities. No additional fragmentation of the species recorded with the closed source is observed.
Cited articles
Anderson, B. J.,
Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A.,
Solomon, S. C., McNutt Jr., R. L., Raines, J. M., and Zurbuchen, T. H.:
The global magnetic field of Mercury from MESSENGER orbital observations,
Science, 333, 1859–1862, https://doi.org/10.1126/science.1211001, 2011. a
Bishop, J. and Chamberlain, J. W.: Radiation pressure dynamics
in planetary exospheres: A “natural” framework,
Icarus, 81, 145–163, https://doi.org/10.1016/0019-1035(89)90131-0, 1989. a, b, c, d
Borin, P., Cremonese, G., Marzari, F., Bruno, M., and Marchi, S.:
Statistical analysis of micrometeorites flux on Mercury,
Astron. Astrophys., 503,
259–264, https://doi.org/10.1051/0004-6361/200912080, 2009. a
Borin, P., Bruno, M., Cremonese, G., and Marzari, F.:
Estimate of the neutral atoms' contribution to the
Mercury exosphere caused by a new flux of micrometeoroids,
Astron. Astrophys., 517, A89,
https://doi.org/10.1051/0004-6361/201014312, 2010. a
Broadfoot, A. L., Shemansky, D. E., and Kumar, S.:
Mariner 10 – Mercury atmosphere,
Geophys. Res. Lett., 3, 577–580.
https://doi.org/10.1029/GL003i010p00577, 1976. a
Burger, M. H., Killen, R. M., Vervack Jr., R. J., Bradley, E. T.,
McClintock, W. E., Sarantos, M., Benna, M., and Mouawad, N.:
Monte Carlo modeling of sodium in Mercury's exosphere during
the first two MESSENGER flybys,
Icarus, 209, 63–74,
https://doi.org/10.1016/j.icarus.2010.05.007, 2010.
Cassidy, T. A., McClintock, W. E., Killen,
R. M., Sarantos, M., Merkel, A. W., Vervack,
R. J., Burger, and Matthew, H.: A cold-pole enhancement
in Mercury's sodium exosphere,
Geophys. Res. Lett., 43, 11121–11128,
https://doi.org/10.1002/2016GL071071, 2016. a
Chamberlain, J. W.: Planetary coronae and atmospheric
evaporation,
Planet. Space Sci., 11, 901–960,
https://doi.org/10.1016/0032-0633(63)90122-3, 1963. a, b, c, d
Chase, S. C., Jr., Miner, E. D., Morrison, D., Muench, G.,
and Neugebauer, G.: Mariner 10 infrared radiometer results –
Temperatures and thermal properties of the surface of Mercury,
Icarus, 28, 565–578,
https://doi.org/10.1016/0019-1035(76)90130-5, 1976. a
Cintala, M. J.: Impact-induced thermal effects in the
lunar and Mercurian regoliths,
J. Geophys. Res., 97, 947–973,
https://doi.org/10.1029/91JE02207, 1992. a
Collier, M. R., Moore, T. E., Ogilvie, K. W., Chornay, D. J.,
Keller, M. C., Fuselier, B. L., Quinn, J., Wurz, P., Wuest,
P., and Hsieh, K. C.: Dust in the wind: The dust geometric cross
section at 1 AU based on neutral solar wind observations,
Solar Wind X, American Institute Physics, 679, 790–793,
https://doi.org/10.1063/1.161871, 2003. a
Eichhorn, G.:
Heating and vaporization during hypervelocity particle impact,
Planet. Space Sci., 26, 463–467,
https://doi.org/10.1016/0032-0633(78)90067-3, 1978a. a, b
Gamborino, D.
and Wurz, P.: Velocity distribution of Na released by photons from
planetary surfaces,
Planet. Space Sci., 159, 97–104,
https://doi.org/10.1016/j.pss.2018.04.021, 2018. a, b, c
Hale, A. S. and
Hapke, B.: A Time-Dependent Model of Radiative and Conductive
Thermal Energy Transport in Planetary Regoliths with Applications
to the Moon and Mercury,
Icarus, 156, 318–334,
https://doi.org/10.1006/icar.2001.6768, 2002. a
Ip, W. H.: The sodium
exosphere and magnetosphere of Mercury,
Geophys. Res. Lett., 13, 423–426,
https://doi.org/10.1029/GL013i005p00423, 1986. a, b
Johnson,
R. E., Leblanc, F., Yakshinskiy, B. V., and Madey, T. E.:
Energy distributions for desorption of sodium and potassium
from ice: the Na∕K ratio at Europa,
Icarus, 156, 136–142,
https://doi.org/10.1006/icar.2001.6763, 2002.
Kallio, E.
and Janhunen, P.: Solar wind and magnetospheric ion impact
on Mercury's surface,
Geophys. Res. Lett., 30, 1877,
https://doi.org/10.1029/2003GL017842, 2003. a
Killen, R. M.,
Potter, A. E., and Morgan, T. H.: Spatial distribution of
sodium vapor in the atmosphere of Mercury,
Icarus, 85, 145–167,
https://doi.org/10.1016/0019-1035(90)90108-L, 1990.
Killen,
R. M., Potter, A., Fitzsimmons, A., and Morgan, T. H.:
Sodium D2 line profiles: clues to the temperature structure
of Mercury's exosphere,
Planet. Space Sci., 47, 1449–1458,
https://doi.org/10.1016/S0032-0633(99)00071-9, 1999.
Killen, R., G.
Sarantos, M., Potter, A. E., and Reiff, P.: Source rates and ion
recycling rates for Na and K in Mercury's atmosphere,
Icarus, 171, 1–19,
https://doi.org/10.1016/j.icarus.2004.04.007, 2007. a, b
Killen, R.,
Cremonese, G., Lammer, H., Orsini, S., Potter, A. E., Sprague,
A. L., Wurz, P., Khodachenko, M., Lichtenegger, H. I. M.,
Milillo, A., and Mura, A.: Processes that promote and
deplete the exosphere of Mercury,
Space Sci. Rev., 132, 433–509,
https://doi.org/10.1007/s11214-007-9232-0, 2007. a, b, c, d
Killen R.,
Shemansky, D., and Mouawad N.: Expected emission from
Mercury's exospheric species, and their ultraviolet-visible
signatures,
Astrophys. J. Suppl., 181,
351–359, https://doi.org/10.1088/0067-0049/181/2/351, 2009.
Leblanc, F.,
Delcourt, D., and Johnson, R. E.: Mercury's sodium
exosphere: magnetospheric ion recycling,
J. Geophys. Res., 108, 5136,
https://doi.org/10.1029/2003JE002151, 2003. a, b, c
Leblanc, F.
Doressoundiram, A., Schneider, N., Massetti, S., Wedlund, M., López,
Ariste, A., Barbieri, C., Mangano, V., and Cremonese, G.:
Short-term variations of Mercury's Na exosphere observed with
very high spectral resolution,
Geophys. Res. Lett., 36, L07201,
https://doi.org/10.1029/2009GL038089, 2009.
Leblanc, F.
and Johnson, R. E.: Mercury exosphere I. Global circulation model
of its sodium component,
Icarus, 209, 280–300,
https://doi.org/10.1016/j.icarus.2010.04.020, 2010. a, b
Lide, D. R.:
CRC Handbook of Chemistry and Physics, 84th Edition.
CRC Press. Boca Raton, Florida, Section 4, 2003. a
Madey, Theodore
E., Yakshinskiy, B. V., Ageev, V. N., and Johnson, R. E.:
Desorption of alkali atoms and ions from oxide surfaces –
Relevance to origins of Na and K in atmospheres of Mercury and
the Moon,
J. Geophys. Res., 103,
5873–5887, https://doi.org/10.1029/98JE00230, 1998. a, b, c
Mallama, A., Wang, D., and Howard, R. A.: Photometry of Mercury from SOHO/LASCO and Earth: The Phase Function from 2∘ to 170∘, Icarus, 155, 253–264, https://doi.org/10.1006/icar.2001.6723, 2002. a
Mangano, V.,
Massetti, S., Milillo, A., Plainaki, C., Orsini, S., Rispoli, R., and
Leblanc, F.: THEMIS Na exosphere observations of Mercury and
their correlation with in-situ magnetic field measurements by
MESSENGER,
Planet. Space Sci., 115, 102–109,
https://doi.org/10.1016/j.pss.2015.04.001, 2015. a
Massetti, S.,
Orsini, S., Milillo, A., Mura, A., DeAngelis, E., Lammer, H.,
and Wurz, P.: Mapping of the cusp plasma precipitation on the
surface of Mercury,
Icarus, 166, 229–237, https://doi.org/10.1016/j.icarus.2003.08.005,
2003. a
Massetti, S.,
Mangano, V., Milillo, A., Mura, A., Orsini, S., Plainaki, C.:
Short-term observations of double-peaked Na emission from
Mercury's exosphere,
Geophys. Res. Lett., 44, 2970–2977,
https://doi.org/10.1002/2017GL073090, 2017. a
McClintock, W. E.,
Bradley, E. T., Vervack, R. J., Killen, R. M., Sprague, A. L.,
Izenberg, N. R., and Solomon, S. C.: Mercury's Exosphere: Observations
During MESSENGER's First Mercury Flyby,
Science, 321, 92–94,
https://doi.org/10.1126/science.1159467, 2008. a
McGrath, M. A.,
Johnson, R. E., and Lanzerotti, L. J.: Sputtering of sodium on
the planet Mercury,
Nature, 323, 694–696,
https://doi.org/10.1038/323694a0, 1986. a
Milillo, A.,
Fujimoto, M., Kallio, E., Kameda, S., Leblanc, F., Narita, Y.,
Cremonese, G., Laakso, H., Laurenza, M., Massetti, S., McKenna-Lawlor,
S., Mura, A., Nakamura, R., Omura, Y., Rothery, D. A., Seki, K.,
Storini, M., Wurz, P., Baumjohann, W., Bunce, E., Kasaba, Y.,
Helbert, J., and Sprague, A.: The BepiColombo mission: an
outstanding tool for investigating the Hermean environment,
Planet. Space Sci., 58, 40–60,
https://doi.org/10.1016/j.pss.2008.06.005, 2010. a
Morgan, T. H.
and Killen, R. M: A non-stoichiometric model of the composition of
the atmospheres of Mercury and the Moon,
Planet. Space Sci., 45, 81–94,
https://doi.org/10.1016/S0032-0633(96)00099-2, 1997. a
Mouawad, N.,
Burger, M. H., Killen, R. M., Potter, A. E., McClintock, W. E.,
Vervack, R. J., Bradley, E. T., Benna, M., and Naidu, S.:
Constraints on Mercury’s Na exosphere: Combined MESSENGER
and ground-based data,
Icarus, 211, 21–36,
https://doi.org/10.1016/j.icarus.2010.10.019, 2011. a
Müller, M.,
Green, S. F., McBride, N., Koschny, D., Zarnecki, J. C.,
and Bentley, M. S.: Estimation of the dust flux near Mercury,
Planet. Space Sci., 50, 1101–1115,
https://doi.org/10.1016/S0032-0633(02)00048-X, 2002. a, b, c
Mura, A., Wurz, P.,
Lichtenegger, H. I. M., Schleicher, H., Lammer, H., Delcourt, D.,
Milillo, A., Orsini, S., Massetti, S., and Khodachenko, M. L.:
The sodium exosphere of Mercury: Comparison between observations
during Mercury's transit and model results,
Icarus, 200, 1–11.
https://doi.org/10.1016/j.icarus.2008.11.014, 2009. a, b
Murcray, F. H.,
Murcray, D. G., and Williamns, W. J.: Infrared emissivity of
lunar surface features, I. Balloon-borne observations,
J. Geophys. Res., 75, 2662–2669,
https://doi.org/10.1029/JB075i014p02662, 1970. a
Orsini, S.,
Livi, S., Torkar, K., Barabash, S., Milillo, A., Wurz, P.,
Di Lellis, A. M., Kallio, E., and The SERENA team: SERENA:
A suite of four instruments (ELENA, STROFIO, PICAM, and
MIPA) on board BepiColombo-MPO for particle detection in
the Hermean evironment,
Planet. Space Sci., 58, 166–-181,
https://doi.org/10.1016/j.pss.2008.09.012, 2010. a
Peplowski, P., Lawrence, D., Feldman, W., Goldsten, J., Bazell,
D., Evans, L., Head, J., Nittler, L., Solomon, S., and Weider, S.:
Geochemical terranes of Mercury's northern hemisphere as
revealed by MESSENGER neutron measurements,
Icarus, 253, 346–363,
https://doi.org/10.1016/j.icarus.2015.02.002, 2015. a, b, c
Potter, A. E. and Morgan, T. H.: Discovery of sodium in
the atmosphere of Mercury,
Science, 229, 651–653,
https://doi.org/10.1126/science.229.4714.651, 1985. a
Potter, A. E. and Morgan, T. H.: Variation of sodium on
Mercury with solar radiation pressure,
Icarus, 71, 472–477,
https://doi.org/10.1016/0019-1035(87)90041-8, 1987.
Potter, A. E. and Morgan, T. H.: Sodium and potassium
atmospheres of Mercury,
Planet. Space Sci., 45, 95–100,
https://doi.org/10.1016/S0032-0633(96)00100-6, 1997. a
Potter, A. E.,
Killen, R. M., and Morgan, T. H.: The sodium tail of Mercury,
Meteorit. Planet. Sci., 37,
1165–1172, https://doi.org/10.1111/j.1945-5100.2002.tb00886.x, 2002.
Potter, A. E.,
Killen, R. M., and Sarantos, M.: Spatial distribution of
sodium on Mercury,
Icarus, 181, 1–12,
https://doi.org/10.1016/j.icarus.2005.10.026, 2006.
Potter, A. E.,
Killen, R. M., and Morgan, T. H.: Solar radiation acceleration effects
on Mercury sodium emission,
Icarus, 186, 571–580,
https://doi.org/10.1016/j.icarus.2006.09.025, 2007. a, b
Raines, J. M.,
Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H.,
Anderson, B. J., and Solomon, S. C.: Structure and dynamics of
Mercury's magnetospheric cusp: MESSENGER measurements of protons
and planetary ions,
J. Geophys. Res.-Space, 119, 6587-–6602,
https://doi.org/10.1002/2014JA020120, 2014. a
Saari, J. M.
and Shorthill, R. W.: The sunlit lunar surface. I. Albedo
studies and full Moon temperature distribution,
The Moon, 5, 161–178,
https://doi.org/10.1007/BF00562111, 1972. a
Sarantos, M.,
Slavin, J. A., Benna, M., Boardsen, S. A., Killen, R. M.,
Schriver, D., and Travnicek, P.: Sodium-ion pickup observed above
the magnetopause during MESSENGER's first Mercury flyby: Constraints
on neutral exospheric models,
Geophys. Res. Lett., 36, L04106, https://doi.org/10.1029/2008GL036207, 2009. a
Schleicher, H.,
Wiedemann, G., Wohl, H., Berkefeld, T., and Soltau, D.:
Detection of neutral sodium above Mercury during the transit
on 2003 May 7,
Astron. Astrophys., 425, 1119–1124,
https://doi.org/10.1051/0004-6361:200 40477, 2004. a, b, c
Schmidt, C. A.:
Monte Carlo modeling of north-south asymmetries in Mercury's
sodium exosphere,
J. Geophys. Res.-Space, 118, 4564–4571,
https://doi.org/10.1002/jgra.50396, 2013. a, b
Simpson, W. C., Wang,
W. K., Yarmo, J. A., and Orlando, T. M.:Photon- and electron-stimulated
desorption of O+ from zirconia,
Surf. Sci., 423, 225–231,
https://doi.org/10.1016/S0039-6028(98)00908-X, 1999.
Smyth, W. H.:
Nature and variability of Mercury's sodium atmosphere,
Nature, 323, 696–699, https://doi.org/10.1038/323696a0, 1986. a
Sprague, A. L.,
Schmitt, W. J., and Hill, R. E.: Mercury: Sodium atmospheric
enhancements, radar-bright spots, and visible surface features,
Icarus, 136, 60–68,
https://doi.org/10.1006/icar.1998.6009, 1998. a
Takakuwa, Y.,
Niwano, M., Nogawa, M., Katakura, H., Matsuyoshi, S., Ishida,
H., Kato, H., and Miyamoto, M.: Photon-stimulated desorption of
H+ ions from oxidized Si(111) surfaces, Japn. J. Appl. Phys., 28, 2581 pp., https://doi.org/10.1143/JJAP.28.2581, 1989.
Vervack, R. J.,
Killen, R. M., McClintock, W. E., Merkel, A. W., Burger, M. H., Cassidy,
T. A., and Sarantos, M.: New discoveries from MESSENGER and insights
into Mercury's exosphere,
Geophys. Res. Lett., 43, 11545–11551,
https://doi.org/10.1002/2016GL071284, 2016.
Vorburger, A.,
Wurz, P., Lammer, H., Barabash, S., and Mousis, O.:
Monte-Carlo simulation of Callisto's exosphere,
Icarus, 262, 14–29, 2015. a
Wang, Y. C. and
Ip, W. H.: Source dependency of exospheric sodium
on Mercury,
Icarus, 216, 387–402,
https://doi.org/10.1016/j.icarus.2011.09.023, 2011. a, b, c
Winslow, R. M.,
Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A.,
Purucker, M. E., and Solomon, S. C.: Observations of Mercury's
northern cusp region with MESSENGER's Magnetometer,
Geophys. Res. Lett., 39, L08112, https://doi.org/10.1029/2012GL051472, 2012. a
Woodruff, D. P.,
Traum, M. M., Farrell, H. H., Smith, N. V., Johnson, P. D.,
King, D. A., Benbow, R. L., and Hurych, Z.:
Photon- and electron-stimulated desorption from a metal surface,
Phys. Rev. B, 21, 5642–5645,
https://doi.org/10.1103/PhysRevB.21.5642, 1980.
Wurz, P., Rohner U.,
Whitby, J. A., Kolb, C., Lammer, H., Dobnikar P., and
Martín-Fernández, J. A.:
The Lunar Exosphere: The Sputtering Contribution,
Icarus, 191, 486–496,
https://doi.org/10.1016/j.icarus.2007.04.034, 2007. a
Wurz, P., Whitby, J. A.,
Rohner U., Martín-Fernández, J. A., Lammer, H., and Kolb, C.:
Self-consistent modeling of Mercury's exosphere by
sputtering, micro-meteorite impact and photon-stimulated desorption,
Planet Space Sci., 58 1599–1616,
https://doi.org/10.1016/j.pss.2010.08.003, 2010. a, b, c
Yakshinskiy,
B. V. and Madey, T. E.: Photon-stimulated desorption as a
substantial source of sodium in the lunar atmosphere,
Nature, 400, 642–644, https://doi.org/10.1038/23204, 1999. a, b, c
Yakshinskiy,
B. V. and Madey, T. E.: Desorption induced by electronic
transitions of Na from SiO2: relevance to tenuous planetary
atmospheres,
Surf. Sci., 451, 160–165,
https://doi.org/10.1016/S0039-6028(00)00022-4, 2000. a, b, c, d
Yakshinskiy,
B. V. and Madey, T. E.: Photon-stimulated desorption of Na
from a lunar sample: temperature-dependent effects,
Icarus, 168, 53–59,
https://doi.org/10.1016/j.icarus.2003.12.007, 2004. a, b, c
Yakshinskiy,
B. V. and Madey, T. E.: Temperature-dependent DIET of alkalis from
SiO2 films: Comparison with a lunar sample,
Surf. Sci., 593, 202–209,
https://doi.org/10.1016/j.susc.2005.06.062, 2005.
Ziegler, J. F.,
Ziegler, M. D., and Biersack, J. P.: SRIM – The stopping and
range of ions in matter,
Nucl. Instrum. Meth. B,
268, 1818–1823,
https://doi.org/10.1016/j.nimb.2010.02.091, 2010. a
Short summary
We propose that the temperature of the Na exosphere of Mercury near the subsolar point is not at high as proposed in previous works. Using a numerical model and the appropriate energy distributions for each release mechanism, we can explain observations made by MESSENGER in April 2012. Our results show that close to the surface, the dominant release mechanism for Na is evaporation due to the solar irradiation, and at high altitudes the best candidate is the release by micro-meteoroid impacts.
We propose that the temperature of the Na exosphere of Mercury near the subsolar point is not at...