Bartels, J., Heck, N. H., and Johnston, H. F.: The three-hour-range index
measuring geomagnetic activity, Terrestrial Magnetism and Atmospheric
Electricity, 44, 411,
https://doi.org/10.1029/TE044i004p00411, 1939.
a
Berkey, F. T., Driatskiy, V. M., Henriksen, K., Hultqvist, B., Jelly,
D. H., Shchuka, T. I., Theander, A., and Ylindemi, J.: A synoptic
investigation of particle precipitation dynamics for 60 substorms in IQSY
(1964–1965) and IASY (1969), Planet. Space Sci., 22, 255–307,
https://doi.org/10.1016/0032-0633(74)90028-2, 1974.
a
Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas,
D. J., and Belian, R. D.: Characteristic plasma properties during
dispersionless substorm injections at geosynchronous orbit, J. Geophys.
Res., 102, 2309–2324,
https://doi.org/10.1029/96JA02870, 1997.
a
Bornebusch, J., Wissing, J., and Kallenrode, M.-B.: Solar particle
precipitation into the polar atmosphere and their dependence on hemisphere
and local time, Adv. Space Res., 45, 632–637,
https://doi.org/10.1016/j.asr.2009.11.008,
2010.
a
Callis, L. B., Baker, D. N., Natarajan, M., Bernard, J. B., Mewaldt,
R. A., Selesnick, R. S., and Cummings, J. R.: A 2-D model simulation of
downward transport of
NOy into the stratosphere: Effects on the 1994
austral spring
O3 and
NOy, Geophys. Res. Lett., 23, 1905–1908,
https://doi.org/10.1029/96GL01788, 1996a.
a
Callis, L. B., Boughner, R. E., Baker, D. N., Mewaldt, R. A., Bernard
Blake, J., Selesnick, R. S., Cummings, J. R., Natarajan, M., Mason,
G. M., and Mazur, J. E.: Precipitating electrons: Evidence for effects on
mesospheric odd nitrogen, Geophys. Res. Lett., 23, 1901–1904,
https://doi.org/10.1029/96GL01787, 1996b.
a
Dombeck, J., Cattell, C., Prasad, N., Meeker, E., Hanson, E., and
McFadden, J.: Identification of Auroral Electron Precipitation Mechanism
Combinations and Their Relationships to Net Downgoing Energy and Number
Flux, J. Geophys. Res.-Space, 123, 10,
https://doi.org/10.1029/2018JA025749, 2018.
a,
b
Evans, D. S. and Greer, M. S.: Polar Orbiting Environmental Satellite
Space Environment Monitor – 2, Instrument Descriptions and Archive Data
Documentation, National Oceanic and Atmospheric Administration, NOAA Space
Environ. Lab, Boulder, Colorado, USA, version 1.4b, including TED
calibrations, 2004. a
Evans, D. S. and Greer, M. S.: Polar Orbiting Environmental Satellite
Space Environment Monitor – 2, Instrument Descriptions and Archive Data
Documentation, National Oceanic and Atmospheric Administration, NOAA Space
Environ. Lab, Boulder, Colorado, USA, version 2.0, 2006.
a,
b,
c,
d,
e
Frank, L. A., Craven, J. D., Ackerson, K. L., English, M. R., Eather,
R. H., and Carovillano, R. L.: Global auroral imaging instrumentation for
the Dynamics Explorer Mission, Space Science Instrumentation, 5, 369–393,
1981. a
Fujii, R., Hoffman, R. A., Anderson, P. C., Craven, J. D., Sugiura,
M., Frank, L. A., and Maynard, N. C.: Electrodynamic parameters in the
nighttime sector during auroral substorms, J. Geophys. Res., 99, 6093–6112,
https://doi.org/10.1029/93JA02210, 1994.
a
Gjerloev, J. W., Hoffman, R. A., Friel, M. M., Frank, L. A., and Sigwarth, J. B.: Substorm behavior of the auroral electrojet indices, Ann. Geophys., 22, 2135–2149,
https://doi.org/10.5194/angeo-22-2135-2004, 2004.
a
Hardy, D. A., Gussenhoven, M. S., and Holeman, E.: A statistical model
of auroral electron precipitation, J. Geophys. Res., 90, 4229–4248,
https://doi.org/10.1029/JA090iA05p04229, 1985.
a
Heath, D. F., Krueger, A. J., and Crutzen, P. J.: Solar proton event –
Influence on stratospheric ozone, Science, 197, 886–889,
https://doi.org/10.1126/science.197.4306.886, 1977.
a
Lockwood, M.: Reconstruction and Prediction of Variations in the Open Solar
Magnetic Flux and Interplanetary Conditions, Living Rev. Sol.
Phys., 10, 4,
https://doi.org/10.12942/lrsp-2013-4, 2013.
a,
b
Logachev, Y. I., Bazilevskaya, G. A., Vashenyuk, E. V., Daibog, E. I.,
Ishkov, V. N., Lazutin, L. L., Miroshnichenko, L. I., Nazarova,
M. N., Petrenko, I. E., Stupishin, A. G., Surova, G. M., and
Yakovchuk, O. S.: Catalog of solar proton events in the 23rd cycle of
solar activity (1996–2008),
The Geophysical Center of the Russian Academy of Sciences, 743,
https://doi.org/10.2205/ESDB-SAD-P-001-RU, 2016.
a
Matthews, D. L., Rosenberg, T. J., Benbrook, J. R., and Bering III,
E. A.: Dayside energetic electron precipitation over the South Pole (lambda
= 75 deg), J. Geophys. Res., 93, 12941–12945,
https://doi.org/10.1029/JA093iA11p12941, 1988.
a
Mende, S. B., Frey, H. U., Morsony, B. J., and Immel, T. J.:
Statistical behavior of proton and electron auroras during substorms,
J. Geophys. Res.-Space, 108, 1339,
https://doi.org/10.1029/2002JA009751, 2003.
a
Meredith, N. P., Horne, R. B., Lam, M. M., Denton, M. H., Borovsky,
J. E., and Green, J. C.: Energetic electron precipitation during
high-speed solar wind stream driven storms, J. Geophys. Res.-Space, 116, A05223,
https://doi.org/10.1029/2010JA016293, 2011.
a
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach,
M.-T., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J.,
Snekvik, K., Korth, H., and Anderson, B. J.: Overview of Solar
Wind-Magnetosphere-Ionosphere-Atmosphere Coupling and the Generation of
Magnetospheric Currents, Space Sci. Rev., 206, 547–573,
https://doi.org/10.1007/s11214-017-0333-0, 2017.
a,
b
Newell, P. T. and Gjerloev, J. W.: Evaluation of SuperMAG auroral
electrojet indices as indicators of substorms and auroral power, J.
Geophys. Res.-Space, 116, A12211,
https://doi.org/10.1029/2011JA016779, 2011a.
a,
b,
c
Newell, P. T. and Gjerloev, J. W.: Substorm and magnetosphere
characteristic scales inferred from the SuperMAG auroral electrojet indices,
J. Geophys. Res.-Space, 116, A12232,
https://doi.org/10.1029/2011JA016936, 2011b.
a
Newell, P. T. and Meng, C.-I.: Mapping the dayside ionosphere to the
magnetosphere according to particle precipitation characteristics, J. Geophys. Res., 19, 609–612,
https://doi.org/10.1029/92GL00404, 1992.
a,
b
Newell, P. T., Sotirelis, T., and Wing, S.: Diffuse, monoenergetic, and
broadband aurora: The global precipitation budget, J. Geophys.
Res.-Space, 114, A09207,
https://doi.org/10.1029/2009JA014326,
2009.
a,
b,
c,
d,
e,
f
Newell, P. T., Lee, A. R., Liou, K., Ohtani, S.-I., Sotirelis, T., and Wing,
S.: Substorm cycle dependence of various types of aurora, J.
Geophys. Res.-Space, 115, A09226,
https://doi.org/10.1029/2010JA015331,
2010.
a
Øieroset, M., Sandholt, P. E., Denig, W. F., and Cowley, S. W. H.:
Northward interplanetary magnetic field cusp aurora and high-latitude
magnetopause reconnection, J. Geophys. Res., 102,
11349–11362,
https://doi.org/10.1029/97JA00559, 1997.
a
Østgaard, N., Stadsnes, J., Bjordal, J., Vondrak, R. R., Cummer,
S. A., Chenette, D. L., Parks, G. K., Brittnacher, M. J., and
McKenzie, D. L.: Global-scale electron precipitation features seen in UV
and X rays during substorms, J. Geophys. Res., 104,
10191–10204,
https://doi.org/10.1029/1999JA900004, 1999.
a
Reeves, G. D., Henderson, M. G., Skoug, R. M., Thomsen, M. F.,
Borovsky, J. E., Funsten, H. O., Son Brandt, P. C., Mitchell, D. J.,
Jahn, J.-M., Pollock, C. J., McComas, D. J., and Mende, S. B.:
IMAGE, POLAR, and Geosynchronous Observations of Substorm and Ring Current
Ion Injection, in: Disturbances in Geospace: The Storm-substorm
Relationship, edited by: Surjalal Sharma, A., Kamide, Y., and Lakhina,
G. S., Vol. 142 of Washington DC American Geophysical Union Geophysical
Monograph Series, p. 91,
https://doi.org/10.1029/142GM09, 2003.
a
Rodger, C. J., Clilverd, M. A., Green, J. C., and Lam, M. M.: Use of POES SEM-2
observations to examine radiation belt dynamics and energetic electron
precipitation into the atmosphere, J. Geophys. Res.-Space, 115, A04202,
https://doi.org/10.1029/2008JA014023,
2010.
a,
b,
c
Sandholt, P. E. and Newell, P. T.: Ground and satellite observations of an
auroral event at the cusp/cleft equatorward boundary, J. Geophys.
Res., 97, 8685–8691,
https://doi.org/10.1029/91JA02995, 1992.
a
Sandholt, P. E., Farrugia, C. J., Øieroset, M., Stauning, P., and
Cowley, S. W. H.: Auroral signature of lobe reconnection, Geophys.
Res. Lett., 23, 1725–1728,
https://doi.org/10.1029/96GL01846, 1996.
a
Sandholt, P. E., Farrugia, C. J., Moen, J., and Cowley, S. W. H.:
Dayside auroral configurations: Responses to southward and northward
rotations of the interplanetary magnetic field, J. Geophys.
Res., 103, 20279–20296,
https://doi.org/10.1029/98JA01541, 1998.
a
Sandholt, P. E., Farrugia, C. J., Cowley, S. W. H., Lester, M.,
Denig, W. F., Cerisier, J.-C., Milan, S. E., Moen, J., Trondsen,
E., and Lybekk, B.: Dynamic cusp aurora and associated pulsed reverse
convection during northward interplanetary magnetic field, J.
Geophys. Res., 105, 12869–12894,
https://doi.org/10.1029/2000JA900025,
2000.
a
Wissing, J. M., Bornebusch, J., and Kallenrode, M.-B.: Variation of
energetic particle precipitation with local magnetic time, Adv. Space
Res., 41, 1274–1278,
https://doi.org/10.1016/j.asr.2007.05.063, 2008.
a
Yando, K., Millan, R. M., Green, J. C., and Evans, D. S.: A Monte Carlo
simulation of the NOAA POES Medium Energy Proton and Electron Detector
instrument, J. Geophys. Res.-Space, 116, A10231,
https://doi.org/10.1029/2011JA016671,
2011.
a