Articles | Volume 36, issue 2
Ann. Geophys., 36, 489–496, 2018
https://doi.org/10.5194/angeo-36-489-2018
Ann. Geophys., 36, 489–496, 2018
https://doi.org/10.5194/angeo-36-489-2018

Regular paper 22 Mar 2018

Regular paper | 22 Mar 2018

Seasonal variations of thermospheric mass density at dawn/dusk from GOCE observations

Libin Weng et al.

Related authors

Eastward-propagating planetary waves in the polar middle atmosphere
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021,https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Would El Niño enhance or suppress the migrating diurnal tide in the MLT region?
Yetao Cen, Chengyun Yang, Tao Li, Jia Yue, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-884,https://doi.org/10.5194/acp-2021-884, 2021
Preprint under review for ACP
Short summary
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021,https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Error analyses of a multistatic meteor radar system to obtain a three-dimensional spatial-resolution distribution
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021,https://doi.org/10.5194/amt-14-3973-2021, 2021
Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021,https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Download
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.