Articles | Volume 36, issue 2
https://doi.org/10.5194/angeo-36-445-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-445-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen
Hans J. Fahr
CORRESPONDING AUTHOR
Argelander-Institut für Astronomie, Universität Bonn,
Auf dem Hügel 71, 53121 Bonn, Germany
Uwe Nass
Argelander-Institut für Astronomie, Universität Bonn,
Auf dem Hügel 71, 53121 Bonn, Germany
Robindro Dutta-Roy
Argelander-Institut für Astronomie, Universität Bonn,
Auf dem Hügel 71, 53121 Bonn, Germany
Jochen H. Zoennchen
Argelander-Institut für Astronomie, Universität Bonn,
Auf dem Hügel 71, 53121 Bonn, Germany
Related authors
Jochen H. Zoennchen, Hyunju K. Connor, Jaewoong Jung, Uwe Nass, and Hans J. Fahr
Ann. Geophys., 40, 271–279, https://doi.org/10.5194/angeo-40-271-2022, https://doi.org/10.5194/angeo-40-271-2022, 2022
Short summary
Short summary
Exospheric Ly-α observations of UVIS/HDAC at CASSINI on its Earth swing-by and TWINS are combined to derive the exospheric H-density profile of the ecliptic dayside between 3–15 RE. At 10 RE nH=35 cm−3 is found in the vicinity of the subsolar point for quiet space weather conditions. Also a faster radial fall of the dayside H density above 8 RE (r−3) compared to lower distances of 3–7 RE (r−2.37) is found and possibly indicates enhanced loss of H atoms near the magnetopause and beyond.
Klaus Scherer, Hans Jörg Fahr, Horst Fichtner, Adama Sylla, John D. Richardson, and Marian Lazar
Ann. Geophys., 36, 37–46, https://doi.org/10.5194/angeo-36-37-2018, https://doi.org/10.5194/angeo-36-37-2018, 2018
Short summary
Short summary
The Voyager plasma observations show that the physics of the heliosheath is rather complex and that temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on κ distributions instead of Maxwellians because the former allows for much higher temperature. Here we show an easy way to calculate the κ temperatures.
Jochen H. Zoennchen, Uwe Nass, Hans J. Fahr, and Jerry Goldstein
Ann. Geophys., 35, 171–179, https://doi.org/10.5194/angeo-35-171-2017, https://doi.org/10.5194/angeo-35-171-2017, 2017
J. H. Zoennchen, U. Nass, and H. J. Fahr
Ann. Geophys., 33, 413–426, https://doi.org/10.5194/angeo-33-413-2015, https://doi.org/10.5194/angeo-33-413-2015, 2015
I. V. Chashei and H. J. Fahr
Ann. Geophys., 31, 1205–1212, https://doi.org/10.5194/angeo-31-1205-2013, https://doi.org/10.5194/angeo-31-1205-2013, 2013
J. H. Zoennchen, U. Nass, and H. J. Fahr
Ann. Geophys., 31, 513–527, https://doi.org/10.5194/angeo-31-513-2013, https://doi.org/10.5194/angeo-31-513-2013, 2013
Jochen H. Zoennchen, Hyunju K. Connor, Jaewoong Jung, Uwe Nass, and Hans J. Fahr
Ann. Geophys., 40, 271–279, https://doi.org/10.5194/angeo-40-271-2022, https://doi.org/10.5194/angeo-40-271-2022, 2022
Short summary
Short summary
Exospheric Ly-α observations of UVIS/HDAC at CASSINI on its Earth swing-by and TWINS are combined to derive the exospheric H-density profile of the ecliptic dayside between 3–15 RE. At 10 RE nH=35 cm−3 is found in the vicinity of the subsolar point for quiet space weather conditions. Also a faster radial fall of the dayside H density above 8 RE (r−3) compared to lower distances of 3–7 RE (r−2.37) is found and possibly indicates enhanced loss of H atoms near the magnetopause and beyond.
Klaus Scherer, Hans Jörg Fahr, Horst Fichtner, Adama Sylla, John D. Richardson, and Marian Lazar
Ann. Geophys., 36, 37–46, https://doi.org/10.5194/angeo-36-37-2018, https://doi.org/10.5194/angeo-36-37-2018, 2018
Short summary
Short summary
The Voyager plasma observations show that the physics of the heliosheath is rather complex and that temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on κ distributions instead of Maxwellians because the former allows for much higher temperature. Here we show an easy way to calculate the κ temperatures.
Jochen H. Zoennchen, Uwe Nass, Hans J. Fahr, and Jerry Goldstein
Ann. Geophys., 35, 171–179, https://doi.org/10.5194/angeo-35-171-2017, https://doi.org/10.5194/angeo-35-171-2017, 2017
J. H. Zoennchen, U. Nass, and H. J. Fahr
Ann. Geophys., 33, 413–426, https://doi.org/10.5194/angeo-33-413-2015, https://doi.org/10.5194/angeo-33-413-2015, 2015
I. V. Chashei and H. J. Fahr
Ann. Geophys., 31, 1205–1212, https://doi.org/10.5194/angeo-31-1205-2013, https://doi.org/10.5194/angeo-31-1205-2013, 2013
J. H. Zoennchen, U. Nass, and H. J. Fahr
Ann. Geophys., 31, 513–527, https://doi.org/10.5194/angeo-31-513-2013, https://doi.org/10.5194/angeo-31-513-2013, 2013
Short summary
We investigate what fraction of the hot hydrogen atoms recently found from Lyman-alpha measurements in the Earth's upper exosphere could have their origin as energetic neutral atoms via charge exchange from protons of the shocked solar wind ahead of the magnetopause.
Our calculations show that this contribution, although definitely present at larger exospheric heights, cannot explain the observations at lower altitudes.
We investigate what fraction of the hot hydrogen atoms recently found from Lyman-alpha...