Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 33, issue 3
Ann. Geophys., 33, 413–426, 2015
https://doi.org/10.5194/angeo-33-413-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 33, 413–426, 2015
https://doi.org/10.5194/angeo-33-413-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 27 Mar 2015

Regular paper | 27 Mar 2015

Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission

J. H. Zoennchen, U. Nass, and H. J. Fahr J. H. Zoennchen et al.
  • Argelander Institut für Astronomie, Astrophysics Department, University of Bonn, Auf dem Huegel 71, 53121 Bonn, Germany

Abstract. Circumterrestrial Lyman-α column brightness observations above 3 Earth radii (Re) have been used to derive separate 3-D neutral hydrogen density models of the Earth's exosphere for solar minimum (2008, 2010) and near-solar-maximum (2012) conditions. The data used were measured by Lyman-α detectors (LAD1/2) onboard each of the TWINS satellites from very different orbital positions with respect to the exosphere. Exospheric H atoms resonantly scatter the near-line-center solar Lyman-α flux at 121.6 nm. Assuming optically thin conditions above 3Re along a line of sight (LOS), the scattered LOS-column intensity is proportional to the LOS H-column density. We found significant differences in the density distribution of the terrestrial exosphere under different solar conditions. Under solar maximum conditions we found higher H densities and a larger spatial extension compared to solar minimum. After a continuous, 2-month decrease in (27 day averaged) solar activity, significantly lower densities were found. Differences in shape and orientation of the exosphere under different solar conditions exist. Above 3 Re, independent of solar activity, increased H densities appear on the Earth's nightside shifted towards dawn. With increasing distance (as measured at 8Re) this feature is shifted westward/duskward by between −4 and −5° with respect to midnight. Thus, at larger geocentric distance the exosphere seems to be aligned with the aberrated Earth–solar-wind line, defined by the solar wind velocity and the orbital velocity of the Earth. The results presented in this paper are valid for geocentric distances between 3 and 8Re.

Publications Copernicus
Download
Citation