Articles | Volume 36, issue 1
https://doi.org/10.5194/angeo-36-275-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-275-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Latitudinal variation rate of geomagnetic cutoff rigidity in the active Chilean convergent margin
Enrique G. Cordaro
CORRESPONDING AUTHOR
Observatorios de Radiación Cósmica, Universidad de Chile, Casilla 487-3, Santiago, Chile
Facultad de Ingeniería, Universidad Autónoma de Chile, Pedro de Valdivia 425, Santiago, Chile
Patricio Venegas
Observatorios de Radiación Cósmica, Universidad de Chile, Casilla 487-3, Santiago, Chile
Departamento de Geofísica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile
David Laroze
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
School of Physical Sciences and Nanotechnology, Yachay Tech University, 00119 Urcuquí, Ecuador
Related authors
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 20, 1485–1496, https://doi.org/10.5194/nhess-20-1485-2020, https://doi.org/10.5194/nhess-20-1485-2020, 2020
Short summary
Short summary
Over the past few years, a number of data have emerged on predicting large earthquakes using the magnetic field. These measurements are becoming strongly supported by rock electrification mechanisms experimentally and theoretically in seismo-electromagnetic theory. However, the processes that occur within the faults have yet to be elucidated. That is why this work theoretically links the friction changes of the faults with the lithospheric magnetic anomalies that surround the faults.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 19, 1639–1651, https://doi.org/10.5194/nhess-19-1639-2019, https://doi.org/10.5194/nhess-19-1639-2019, 2019
Short summary
Short summary
Several authors have shown evidence of electromagnetic measurements prior to earthquakes. However, these investigations lack a physical mechanism to support them. That is why we developed a theory that could explain many of these phenomena. Specifically, we demonstrate that the generation of microcracks in the lithosphere due to stress changes can explain and describe these electromagnetic phenomena.
Enrique G. Cordaro, Patricio Venegas-Aravena, and David Laroze
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-9, https://doi.org/10.5194/angeo-2019-9, 2019
Manuscript not accepted for further review
Short summary
Short summary
The latest research suggests that there could be a relationship between geomagnetic field variations and seismic events in different parts of the planet. These variations have been found in both ground-level magnetometers and satellites studying the ionosphere. The magnetic variations are similar between the earthquakes in Chile (2010, 2014, 2015) and the one in Mexico 2017. Therefore, the use of magnetic variations at ground level or ionospheric could show seismic precursors.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 20, 1485–1496, https://doi.org/10.5194/nhess-20-1485-2020, https://doi.org/10.5194/nhess-20-1485-2020, 2020
Short summary
Short summary
Over the past few years, a number of data have emerged on predicting large earthquakes using the magnetic field. These measurements are becoming strongly supported by rock electrification mechanisms experimentally and theoretically in seismo-electromagnetic theory. However, the processes that occur within the faults have yet to be elucidated. That is why this work theoretically links the friction changes of the faults with the lithospheric magnetic anomalies that surround the faults.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 19, 1639–1651, https://doi.org/10.5194/nhess-19-1639-2019, https://doi.org/10.5194/nhess-19-1639-2019, 2019
Short summary
Short summary
Several authors have shown evidence of electromagnetic measurements prior to earthquakes. However, these investigations lack a physical mechanism to support them. That is why we developed a theory that could explain many of these phenomena. Specifically, we demonstrate that the generation of microcracks in the lithosphere due to stress changes can explain and describe these electromagnetic phenomena.
Enrique G. Cordaro, Patricio Venegas-Aravena, and David Laroze
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-9, https://doi.org/10.5194/angeo-2019-9, 2019
Manuscript not accepted for further review
Short summary
Short summary
The latest research suggests that there could be a relationship between geomagnetic field variations and seismic events in different parts of the planet. These variations have been found in both ground-level magnetometers and satellites studying the ionosphere. The magnetic variations are similar between the earthquakes in Chile (2010, 2014, 2015) and the one in Mexico 2017. Therefore, the use of magnetic variations at ground level or ionospheric could show seismic precursors.
Short summary
The interaction between the magnetic field and the particles coming from outer space, which apparently have a relationship with tectonic plates, is studied. The major earthquakes of Maule (2010, 8.8 Mw), Sumatra (2004, 9.2 Mw) and Tohoku (2011, 9.0 Mw) were studied, similar frequencies being found in the vertical component of the magnetic field (microhertz range). The temporal evolution of the magnetic oscillations showed the possible link with the seismic movement of Maule in 2010.
The interaction between the magnetic field and the particles coming from outer space, which...