Articles | Volume 36, issue 6
https://doi.org/10.5194/angeo-36-1631-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1631-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of gravity waves on the climatology of high-altitude Martian carbon dioxide ice clouds
Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA
Alexander S. Medvedev
Max Planck Institute for Solar System Research, Göttingen, Germany
Paul Hartogh
Max Planck Institute for Solar System Research, Göttingen, Germany
Related authors
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339, https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Short summary
Gravity waves are a small-scale but prominent dynamical feature in the Earth's atmosphere. Here, we use a mechanistic nonlinear general circulation model and implement a modern whole atmosphere gravity wave parameterization. We study the response of the atmosphere on several phase speed spectra. We find a large influence of fast travelling waves on the background dynamics in the thermosphere and also a strong dependence of the amplitude of the terdiurnal solar tide, indicating wave interactions.
Yasunobu Miyoshi and Erdal Yiğit
Ann. Geophys., 37, 955–969, https://doi.org/10.5194/angeo-37-955-2019, https://doi.org/10.5194/angeo-37-955-2019, 2019
Short summary
Short summary
Our numerical simulation shows that the drag due to the dissipation and/or breaking of the gravity wave plays an important role in the general circulation in the thermosphere. This means that the parameterization for the gravity wave drag is necessary for numerical simulation in the thermosphere.
Mariano Fagre, Bruno S. Zossi, Erdal Yiğit, Hagay Amit, and Ana G. Elias
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-27, https://doi.org/10.5194/angeo-2019-27, 2019
Preprint retracted
Short summary
Short summary
Some systems, such as Over the Horizon Radars, use the ionosphere as a reflector for HF radio signals. In this work, HF propagation through the ionosphere is studied for different Earth’s magnetic field configurations during reversals using a numerical ray tracing technique. Our purpose is to highlight possible effects of dipole decrease, which is currently ongoing, on electromagnetic wave propagation through the ionosphere.
Steven Brown, Dieter Bilitza, and Erdal Yiğit
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-97, https://doi.org/10.5194/angeo-2018-97, 2018
Preprint withdrawn
Short summary
Short summary
The ionosphere varies the most over the Northern hemisphere. This is called the
annual anomaly. Ionospheric models, such as the International Reference Ionosphere (IRI), underrepresent the anomaly. The ionosphere affects radio waves, so it is important to always improve these models. We show that it is considering the ionosphere's hemispheric behavior is required to improve IRI. We suggest that the annual anomaly is caused by processes which differ over each hemisphere.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339, https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Short summary
Gravity waves are a small-scale but prominent dynamical feature in the Earth's atmosphere. Here, we use a mechanistic nonlinear general circulation model and implement a modern whole atmosphere gravity wave parameterization. We study the response of the atmosphere on several phase speed spectra. We find a large influence of fast travelling waves on the background dynamics in the thermosphere and also a strong dependence of the amplitude of the terdiurnal solar tide, indicating wave interactions.
Yasunobu Miyoshi and Erdal Yiğit
Ann. Geophys., 37, 955–969, https://doi.org/10.5194/angeo-37-955-2019, https://doi.org/10.5194/angeo-37-955-2019, 2019
Short summary
Short summary
Our numerical simulation shows that the drag due to the dissipation and/or breaking of the gravity wave plays an important role in the general circulation in the thermosphere. This means that the parameterization for the gravity wave drag is necessary for numerical simulation in the thermosphere.
Mariano Fagre, Bruno S. Zossi, Erdal Yiğit, Hagay Amit, and Ana G. Elias
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-27, https://doi.org/10.5194/angeo-2019-27, 2019
Preprint retracted
Short summary
Short summary
Some systems, such as Over the Horizon Radars, use the ionosphere as a reflector for HF radio signals. In this work, HF propagation through the ionosphere is studied for different Earth’s magnetic field configurations during reversals using a numerical ray tracing technique. Our purpose is to highlight possible effects of dipole decrease, which is currently ongoing, on electromagnetic wave propagation through the ionosphere.
Richard Larsson, Yasuko Kasai, Takeshi Kuroda, Shigeru Sato, Takayoshi Yamada, Hiroyuki Maezawa, Yutaka Hasegawa, Toshiyuki Nishibori, Shinichi Nakasuka, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 7, 331–341, https://doi.org/10.5194/gi-7-331-2018, https://doi.org/10.5194/gi-7-331-2018, 2018
Short summary
Short summary
We are planning a Mars mission. The mission will carry an instrument capable of measuring and mapping molecular oxygen and water in the Martian atmosphere, as well as the temperature, wind, and magnetic field. Water and oxygen are vital parts of the Martian atmospheric chemistry and must be better understood. Using computer simulation results, the paper gives a description of how the measurements will work, some problems we expect to encounter, and the sensitivity of the measurements.
Steven Brown, Dieter Bilitza, and Erdal Yiğit
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-97, https://doi.org/10.5194/angeo-2018-97, 2018
Preprint withdrawn
Short summary
Short summary
The ionosphere varies the most over the Northern hemisphere. This is called the
annual anomaly. Ionospheric models, such as the International Reference Ionosphere (IRI), underrepresent the anomaly. The ionosphere affects radio waves, so it is important to always improve these models. We show that it is considering the ionosphere's hemispheric behavior is required to improve IRI. We suggest that the annual anomaly is caused by processes which differ over each hemisphere.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Richard Larsson, Mathias Milz, Patrick Eriksson, Jana Mendrok, Yasuko Kasai, Stefan Alexander Buehler, Catherine Diéval, David Brain, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 6, 27–37, https://doi.org/10.5194/gi-6-27-2017, https://doi.org/10.5194/gi-6-27-2017, 2017
Short summary
Short summary
By computer simulations, we explore and quantify how to use radiation emitted by molecular oxygen in the Martian atmosphere to measure the magnetic field from the crust of the planet. This crustal magnetic field is important to understand the past evolution of Mars. Our method can measure the magnetic field at lower altitudes than has so far been done, which could give important information on the characteristics of the crustal sources if a mission with the required instrument is launched.
G. R. Sonnemann, P. Hartogh, U. Berger, and M. Grygalashvyly
Ann. Geophys., 33, 749–767, https://doi.org/10.5194/angeo-33-749-2015, https://doi.org/10.5194/angeo-33-749-2015, 2015
K. Hallgren, P. Hartogh, and C. Jarchow
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-4677-2013, https://doi.org/10.5194/amtd-6-4677-2013, 2013
Revised manuscript has not been submitted
K. Hallgren, P. Hartogh, and C. Jarchow
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-12-31531-2012, https://doi.org/10.5194/acpd-12-31531-2012, 2012
Revised manuscript has not been submitted
Related subject area
Subject: Terrestrial planets systems | Keywords: Mars
Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory
Joonas Leino, Ari-Matti Harri, Mark Paton, Jouni Polkko, Maria Hieta, and Hannu Savijärvi
Ann. Geophys., 42, 331–348, https://doi.org/10.5194/angeo-42-331-2024, https://doi.org/10.5194/angeo-42-331-2024, 2024
Short summary
Short summary
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
Cited articles
Ando, H., Imamura, T., and Tsuda, T.: Vertical wavenumber spectra
of gravity waves in the Martian atmosphere obtained from Mars Global
Surveyor radio occultation data, J. Atmos. Sci., 69,
2906–2912, https://doi.org/10.1175/JAS-D-11-0339.1, 2012. a
Aoki, S., Sato, Y., Giuranna, M., Wolkenberg, P., Sato, T., Nakagawa,
H., and Kasaba, Y.: Mesospheric CO2 ice clouds on Mars observed by
Planetary Fourier Spectrometer onboard Mars Express,
Icarus, 302, 175–190,
https://doi.org/10.1016/j.icarus.2017.10.047, 2018. a
Brecht, A., Bougher, S. W., and Yiğit, E.: Parameterizing
gravity waves and understanding their impacts on venus' upper atmosphere, in
52nd ESLAB Symposium, Noordwijk, Netherlands, May, 2018. a
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., and
Smith, M. D.: Mars equatorial mesospheric clouds: Global occurrence and
physical properties from mars global surveyor thermal emission spectrometer
and mars orbiter camera limb observations, J. Geophys. Res.,
112, E04004,
https://doi.org/10.1029/2006JE002805, 2007. a, b
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F.:
CO2 clouds, CAPE and convection on Mars: Observations and general
circulation modeling, Planet. Space Sci., 56, 150–180,
https://doi.org/10.1016/j.pss.2007.08.010, 2008. a, b
England, S. L., Liu, G., Yiğit, E., Mahaffy, P. R., Elrod, M.,
Benna, M., Nakagawa, H., Terada, N., and Jakosky, B.: MAVEN NGIMS
observations of atmospheric gravity waves in the Martian thermosphere,
J. Geophys. Res.-Space, 122, 2310–2335, https://doi.org/10.1002/2016JA023475,
2017. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and
effects in the middle atmosphere, Rev. Geophys., 41,
1003, https://doi.org/10.1029/2001RG000106, 2003. a
Fritts, D. C., Wang, L., and Tolson, R. H.: Mean and gravity wave
structures and variability in the Mars upper atmosphere inferred from
Mars global surveyor and Mars odyssey aerobraking densities, J.
Geophys. Res., 111, A12304, https://doi.org/10.1029/2006JA011897, 2006. a
Garcia, R. R. and Solomon, S.: The effect of breaking gravity
waves on the dynamics and chemical composition of the mesosphere and lower
thermosphere, J. Geophys. Res., 90, 3850–3868,
1985. a
González-Galindo, F., Määtänen, A., Forget, F., and Spiga, A.:
The martian mesosphere as revealed by CO2 cloud observations and
general circulation modeling, Icarus, 216, 10–22,
https://doi.org/10.1016/j.icarus.2011.08.006, 2011. a, b, c
Graf, J. E., Zurek, R. W., Eisen, H. J., Johnston, M., Jai, B., and
DePaula, R.: The mars reconnaissance orbiter mission, Acta
Astronaut., 57, 566–578,
https://doi.org/10.1016/j.actaastro.2005.03.043, 2005. a
Hartogh, P., Medvedev, A. S., Kuroda, T., Saito, R., Villanueva, G.,
Feofilov, A. G., Kutepov, A. A., and Berger, U.: Description and climatology
of a new general circulation model of the Martian atmosphere, J.
Geophys. Res., 110, E11008, https://doi.org/10.1029/2005JE002498, 2005. a
Hartogh, P., Medvedev, A. S., and Jarchow, C.: Middle atmosphere
polar warmings on mars: simulations and study on the validation with
sub-millimeter observations, Planet. Space Sci., 55,
1103–1112, 2007. a
Hickey, M. P. and Cole, K. D.: A numerical model for gravity
wave dissipation in the thermosphere, J. Atmos. Terr. Phys.,
50, 689–697, 1988. a
Jensen, E. J. and Thomas, G. E.: Numerical simulations of the
effects of gravity waves on noctilucent clouds, J. Geophys. Res.-Atmos., 99,
3421–3430, https://doi.org/10.1029/93JD01736, 1994. a
Kuroda, T., Medvedev, A. S., Kasaba, Y., and Hartogh, P.: Carbon
dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter
polar atmosphere of mars, Geophys. Res. Lett., 40, 1–5,
https://doi.org/10.1002/grl.50326, 2013. a
Kuroda, T., Medvedev, A. S., Yiğit, E., and Hartogh, P.: A
global view of gravity waves in the martian atmosphere inferred from a
high-resolution general circulation model, Geophys. Res.
Lett., 42, 9213–9222, https://doi.org/10.1002/2015GL066332, 2015. a, b
Kuroda, T., Medvedev, A. S., Yiğit, E., and Hartogh, P.:
Global distribution of gravity wave sources and fields in the martian
atmosphere during equinox and solstice inferred from a high-resolution
general circulation model, J. Atmos. Sci., 73, 4895–4909,
https://doi.org/10.1175/JAS-D-16-0142.1, 2016. a, b
Listowski, C., Määtänen, A., Montmessin, F., Spiga, A., and
Lefévre, F.: Modeling the microphysics of CO2 ice clouds within
wave-induced cold pockets in the martian mesosphere, Icarus,
237, 239–261, https://doi.org/10.1016/j.icarus.2014.04.022, 2014. a
Määttänen, A., Montmessin, F., Gondet, B., Scholten, F.,
Hoffmann, H., González-Galindo, F., Spiga, A., Forget, F., Hauber,
E., Neukum, G., Bibring, J.-P., and Bertaux, J.-L.: Mapping the mesospheric
CO2 clouds on mars: MEx/OMEGA and MEx/HRSC observations and challenges
for atmospheric models, Icarus, 209, 452–469,
https://doi.org/10.1016/j.icarus.2010.05.017, 2010. a, b
McConnochie, T., Savransky III, J. B. D., Wolff, M., Toigo, A., Wang,
H., Richardson, M., and Christensen, P.: Themis-vis observations of clouds
in the martian mesosphere: Altitudes, wind speeds, and decameter-scale
morphology, Icarus, 210, 545–565,
https://doi.org/10.1016/j.icarus.2010.07.021, 2010. a
Medvedev, A. S. and Hartogh P.: Winter polar warmings and the
meridional transport on Mars simulated with a general circulation model,
Icarus, 186, 97–110, 2007. a
Medvedev, A. S. and Yiğit, E.: Thermal effects of internal
gravity waves in the Martian upper atmosphere, Geophys. Res.
Lett., 39, L05201, https://doi.org/10.1029/2012GL050852, 2012. a
Medvedev, A. S., Yiğit, E., Hartogh, P., and Becker, E.: Influence
of gravity waves on the Martian atmosphere:
General circulation modeling, J. Geophys. Res., 116,
E10004, https://doi.org/10.1029/2011JE003848, 2011a. a, b, c, d
Medvedev, A. S., Yiğit, E., and Hartogh, P.:
Estimates of gravity wave drag on Mars: indication of a possible lower
thermosphere wind reversal, Icarus, 211, 909–912,
https://doi.org/10.1016/j.icarus.2010.10.013, 2011b. a, b, c, d
Medvedev, A. S., Yiğit, E., Kuroda, T., and Hartogh, P.:
General circulation modeling of the martian upper atmosphere during global
dust storms, J. Geophys. Res.-Planets, 118, 1–13,
https://doi.org/10.1002/jgre.20163, 2013. a
Medvedev, A. S., González-Galindo, F., Yiğit, E., Feofilov, A. G.,
Forget, F., and Hartogh, P.: Cooling of the martian thermosphere by
CO2 radiation and gravity waves: An intercomparison study with two
general circulation models, J. Geophys. Res.-Planets, 120, 913–927,
https://doi.org/10.1002/2015JE004802, 2015. a, b, c, d
Medvedev, A. S., Nakagawa, H., Mockel, C., Yiğit, E., Kuroda, T.,
Hartogh, P., Terada, K., Terada, N., Seki, K., Schneider, N. M., Jain, S. K.,
Evans, J. S., Deighan, J. I., McClintock, W. E., Lo, D., and Jakosky, B. M.:
Comparison of the martian thermospheric density and temperature from
iuvs/maven data and general circulation modeling, Geophys. Res.
Lett., 43, 3095–3104, https://doi.org/10.1002/2016GL068388, 2016. a
Mischna, M. A., Kasting, J. F., Pavlov, A., and Freedman, R.:
Influence of carbon dioxide clouds on early martian climate, Icarus,
145, 546–554, https://doi.org/10.1006/icar.2000.6380, 2000. a
Miyoshi, Y., Fujiwara, H., Jin, H., and Shinagawa, H.: A global
view of gravity waves in the thermosphere simulated by a general circulation
model, J. Geophys. Res.-Space, 119, 5807–5820,
https://doi.org/10.1002/2014JA019848, 2014. a
Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., and Clancy, R. T.:
A photochemical model of the martian atmosphere, Icarus,
111, 124–150, 1994. a
Parish, H. F., Schubert, G., Hickey, M., and Walterscheid, R. L.:
Propagation of tropospheric gravity waves into the upper atmosphere of
Mars, Icarus, 203, 28–37, 2009. a
Rapp, M., Lübken, F.-J., Müllemann, A., Thomas, G. E., and
Jensen, E. J.: Small-scale temperature variations in the vicinity of NLC:
Experimental and model results, J. Geophys. Res.-Atmos.,
107, AAC 11–1–AAC 11–20, https://doi.org/10.1029/2001JD001241, 2002. a
Schofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S.,
Magalhães, J. A., Murphy, J. R., Seiff, A., and Wilson, G.: The Mars
Pathfinder Atmospheric Structure Investigation/Meteorology
(asi/met) Experiment, Science, 278, 1752–1758,
https://doi.org/10.1126/science.278.5344.1752, 1997. a
Sefton-Nash, E., Teanby, N. A., Montabone, L., Irwin, P. G. J., Hurley,
J.,
and Calcutt, S. B.: Climatology and first-order composition estimates
of mesospheric clouds from mars climate sounder limb spectra,
Icarus, 222, 342–356, https://doi.org/10.1016/j.icarus.2012.11.012, 2013. a, b, c, d, e, f, g, h, i, j, k
Siskind, D. E. and Stevens, M.: A radiative feedback from an
interactive polar mesospheric cloud parameterization in a two dimensional
model, Adv. Space Res., 38, 2383–2387,
https://doi.org/10.1016/j.asr.2005.03.094, 2006. a
Smith, M. D.: Spacecraft observations of the martian
atmosphere, Annu. Rev. Earth Pl. Sc., 36, 191–219, 2008. a
Spiga, A., González-Galindo, F., López-Valverde, M.-A., and
Forget, F.: Gravity waves, cold pockets and CO2 clouds in the
martian mesosphere, Geophys. Res. Lett., 39, L02201,
https://doi.org/10.1029/2011GL050343, 2012. a
Stevens, M. H., Siskind, D. E., Evans, J. S., Jain, S. K.,
Schneider, N. M., Deighan, J., Stewart, A. I. F., Crismani, M., Stiepen, A.,
Chaffin, M. S., McClintock, W. E., Holsclaw, G. M., Lefèvre, F., Lo, D. Y., Clarke, J. T., Montmessin, F., and
Jakosky, B. M.: Martian mesospheric cloud observations by IUVS on
MAVEN: Thermal tides coupled to the upper atmosphere, Geophys. Res.
Lett., 44, 4709–4715, https://doi.org/10.1002/2017GL072717, 2017. a
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., and Bibring,
J.-P.: New near-IR observations of mesospheric co2 and h2o clouds on mars,
J. Geophys. Res.-Planets, 116, E00J02,
https://doi.org/10.1029/2011JE003827, 2011. a
Walterscheid, R. L., Hickey, M. P., and Schubert, G.: Wave
heating and jeans escape in the martian upper atmosphere, J. Geophys.
Res.-Planets, 118, 2169–9402,
https://doi.org/10.1002/jgre.20164, 2013. a
Witt, G.: Height, structure and displacements of noctilucent
clouds, Tellus, 1–18, 1–2, 1962. a
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the
thermosphere by internal gravity waves, Geophys. Res. Lett.,
36, L14807, https://doi.org/10.1029/2009GL038507, 2009. a
Yiğit, E. and Medvedev, A. S.: Extending the
parameterization of gravity waves into the thermosphere and modeling their
effects, in: Climate and Weather of the Sun-Earth System (CAWSES),
edited by: Lübken, F.-J., Springer Atmospheric Sciences,
Springer Netherlands, 467–480, https://doi.org/10.1007/978-94-007-4348-9_25, 2013. a
Yiğit, E. and Medvedev, A. S.: Internal wave coupling
processes in Earth's atmosphere, Adv. Space Res., 55,
983–1003, https://doi.org/10.1016/j.asr.2014.11.020, 2015. a
Yiğit, E. and Medvedev, A. S.: Role of gravity waves in
vertical coupling during sudden stratospheric warmings, Geosci.
Lett., 3, 1–13, https://doi.org/10.1186/s40562-016-0056-1, 2016. a
Yiğit, E. and Medvedev, A. S.: Influence of parameterized
small-scale gravity waves on the migrating diurnal tide in earth's
thermosphere, J. Geophys. Res.-Space, 122, 4846–4864,
https://doi.org/10.1002/2017JA024089, 2017. a
Yiğit, E., Aylward, A. D., and Medvedev, A. S.:
Parameterization of the effects of vertically propagating gravity waves for
thermosphere general circulation models: Sensitivity study, J.
Geophys. Res., 113, D19106, https://doi.org/10.1029/2008JD010135, 2008. a, b, c, d
Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., and
Harris, M. J.: Modeling the effects of gravity wave momentum deposition on
the general circulation above the turbopause, J. Geophys. Res.,
114, D07101, https://doi.org/10.1029/2008JD011132, 2009. a, b, c
Yiğit, E., Medvedev, A. S., and Hartogh, P.:
Gravity waves and high-altitude CO2 ice cloud formation in the martian
atmosphere, Geophys. Res. Lett., 42, 4294–4300,
https://doi.org/10.1002/2015GL064275, 2015a.
a
Yiğit, E., England, S. L., Liu, G., Medvedev, A. S., Mahaffy, P. R.,
Kuroda, T., and Jakowsky, B.: High-altitude gravity waves
in the martian thermosphere observed by MAVEN/NGIMS and modeled by a
gravity wave scheme, Geophys. Res. Lett., 42, 8993–9000,
https://doi.org/10.1002/2015GL065307, 2015b. a
Zurek, R. W. and Smrekar, S. E.: An overview of the Mars
Reconnaissance Orbiter (MRO) science mission, J. Geophys.
Res., 112, E05S01, https://doi.org/10.1029/2006JE002701, 2007. a
Short summary
Carbon dioxide (CO2) clouds have been frequently observed in the Martian middle atmosphere. There are still uncertainties concerning the formation of the clouds. Using an atmospheric model for Mars, including a gravity wave parameterization, we assess the role of gravity waves in cloud formation. Simulations suggest that gravity wave processes constitute a necessary physical mechanism for CO2 cloud formation in the Martian upper atmosphere during all seasons.
Carbon dioxide (CO2) clouds have been frequently observed in the Martian middle atmosphere....