Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
Mariano Fagre1,2,Bruno S. Zossi3,4,Erdal Yiğit5,Hagay Amit6,and Ana G. Elias3,4Mariano Fagre et al.Mariano Fagre1,2,Bruno S. Zossi3,4,Erdal Yiğit5,Hagay Amit6,and Ana G. Elias3,4
1Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
2Laboratorio de Telecomunicaciones, Departamento de Electricidad, Electrónica y Computación, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucuman, Argentina
3Laboratorio de Física de la Atmosfera, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucuman, Argentina
4INFINOA (CONICET-UNT), Tucuman, Argentina
5Space Weather Laboratory, Department of Physics and Astronomy, George Mason University, USA
6CNRS, Université de Nantes, Nantes Atlantiques Universités, Laboratoire de Planétologie et de Géodynamique, Nantes, France
1Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
2Laboratorio de Telecomunicaciones, Departamento de Electricidad, Electrónica y Computación, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucuman, Argentina
3Laboratorio de Física de la Atmosfera, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucuman, Argentina
4INFINOA (CONICET-UNT), Tucuman, Argentina
5Space Weather Laboratory, Department of Physics and Astronomy, George Mason University, USA
6CNRS, Université de Nantes, Nantes Atlantiques Universités, Laboratoire de Planétologie et de Géodynamique, Nantes, France
Received: 22 Feb 2019 – Discussion started: 27 Feb 2019
Abstract. The ionosphere is an anisotropic, dispersive medium for the propagation of radio frequency electromagnetic waves due to the presence of the Earth's intrinsic magnetic field and free charges. The detailed physics of electromagnetic wave propagation through a plasma is more complex when it is embedded in a magnetic field. In particular, the ground range of waves reflecting in the ionosphere presents detectable magnetic field effects. Earth's magnetic field varies greatly, with the most drastic scenario being a polarity reversal. Here the spatial variability of the ground range is analyzed using numerical ray tracing under possible reversal scenarios. Pattern changes of the spitze, a cusp in the ray path closely related to the geomagnetic field, are also assessed. The ground range increases with magnetic field intensity and ray alignment with the field direction. For the present field, which is almost axial dipolar, this happens for Northward propagation at the magnetic equator, peaking in Indonesia where the intensity is least weak along the equator. A similar situation occurs for a prevailing equatorial dipole with Eastward ray paths at the corresponding magnetic equator that here runs almost perpendicular to the geographic equator. Larger spitze angles occur for smaller magnetic inclinations, and higher intensities. This is clearly observed for the present field and the dipole rotation scenario along the corresponding magnetic equators. For less dipolar configurations the ground range and spitze spatial variabilities become smaller scale. Overall, studying ionospheric dynamics during a reversal may highlight possible effects of dipole decrease which is currently ongoing.
Some systems, such as Over the Horizon Radars, use the ionosphere as a reflector for HF radio signals. In this work, HF propagation through the ionosphere is studied for different Earth’s magnetic field configurations during reversals using a numerical ray tracing technique. Our purpose is to highlight possible effects of dipole decrease, which is currently ongoing, on electromagnetic wave propagation through the ionosphere.
Some systems, such as Over the Horizon Radars, use the ionosphere as a reflector for HF radio...