Articles | Volume 36, issue 6
https://doi.org/10.5194/angeo-36-1607-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1607-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Solar wind and kinetic heliophysics
Eckart Marsch
CORRESPONDING AUTHOR
Institute for Experimental and Applied Physics, Kiel University, Leibnizstraße 11, 24118 Kiel, Germany
Invited contribution by Eckart Marsch, recipient of the EGU Hannes Alfvén Medal 2018.
Related authors
Y. Narita, E. Marsch, C. Perschke, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 393–398, https://doi.org/10.5194/angeo-34-393-2016, https://doi.org/10.5194/angeo-34-393-2016, 2016
L. Zhang, L.-P. Yang, J.-S. He, C.-Y. Tu, L.-H. Wang, E. Marsch, and X.-S. Feng
Ann. Geophys., 33, 13–23, https://doi.org/10.5194/angeo-33-13-2015, https://doi.org/10.5194/angeo-33-13-2015, 2015
Y. Narita, E. Marsch, C. Perschke, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 393–398, https://doi.org/10.5194/angeo-34-393-2016, https://doi.org/10.5194/angeo-34-393-2016, 2016
L. Zhang, L.-P. Yang, J.-S. He, C.-Y. Tu, L.-H. Wang, E. Marsch, and X.-S. Feng
Ann. Geophys., 33, 13–23, https://doi.org/10.5194/angeo-33-13-2015, https://doi.org/10.5194/angeo-33-13-2015, 2015
Cited articles
Alexandrova, O., Chen, C. H. K., Sorriso-Valvo, L., Horbury, T. S., and Bale,
S. D.: Solar Wind Turbulence and the Role of Ion Instabilities, Space Sci.
Rev., 178, 101–139, https://doi.org/10.1007/s11214-013-0004-8, 2014. a, b
Alfvén, H.: Existence of Electromagnetic-Hydrodynamic Waves, Nature, 150, 405–406, 1942. a
Alfvén, H.: Cosmical Electrodynamics, International Series of
Monographs on Physics, Clarendon Press, Oxford, 1950. a
Antiochos, S. K., Linker, J. A., Lionello, R., Mikíc, Z., Titov, V., and
Zurbuchen, T. H.: The Structure and Dynamics of the Corona–Heliosphere
Connection, Space Sci. Rev., 172, 169–185, https://doi.org/10.1007/s11214-011-9795-7,
2012. a
Araneda, J. A., Marsch, E., and Vinãs, A. F.: Collisionless damping of
parametrically unstable Alfvén waves, J. Geophys. Res., 112, A04104,
https://doi.org/10.1029/2006JA011999, 2007. a
Araneda, J. A., Marsch, E., and Vinãs, A. F.: Proton Core Heating and Beam
Formation via Parametrically Unstable Alfvén-Cyclotron Waves, Phys. Rev.
Lett., 100, 125003, https://doi.org/10.1103/PhysRevLett.100.125003, 2008. a, b, c
Araneda, J. A., Maneva, Y., and Marsch, E.: Preferential Heating and
Acceleration of α Particles by Alfvén-Cyclotron Waves, Phys. Rev.
Lett., 102, 175001, https://doi.org/10.1103/PhysRevLett.102.175001, 2009. a
Axford, W. I. and McKenzie, J. F.: The origin of high speed solar wind
streams, in: Solar Wind Seven, edited by: Marsch, E. and Schwenn, R.,
Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20
September 1991, Pergamon Press, Oxford, 1992. a
Axford, W. I., McKenzie, J. F., Sukhorukova, G. V., Banaszkiewicz, M.,
Czechowski, A., and Ratkiewicz, R.: Acceleration of the high speed solar wind
in coronal holes, Space Sci. Rev., 87, 25–41, 1999. a
Bale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C., and
Sundkvist, D.: Magnetic Fluctuation Power Near Proton Temperature Anisotropy
Instability Thresholds in the Solar Wind, Phys. Rev. Lett., 103, 211101,
https://doi.org/10.1103/PhysRevLett.103.211101, 2009. a
Balogh, A., Lanzerotti, L. J., and Suess, S. T. (Eds.): The Heliosphere
through the Solar Activity Cycle, Springer, Berlin, 2008. a
Bavassano, B., Pietropaolo, E., and Bruno, R.: Compressive fluctuations in
high-latitude solar wind, Ann. Geophys., 22, 689–696,
https://doi.org/10.5194/angeo-22-689-2004, 2004. a, b
Borovsky, J. E.: Flux tube texture of the solar wind: Strands of the magnetic
carpet at 1 AU?, J. Geophys. Res., 113, A08110, https://doi.org/10.1029/2007JA012684,
2008. a
Bourouaine, S., Marsch, E., and Neubauer, F. M.: Correlations between the
proton temperature anisotropy and transverse high-frequency waves in the
solar wind, Geophys. Res. Lett., 37, L14104, https://doi.org/10.1029/2010GL043697, 2010. a
Bourouaine, S., Alexandrova, O., Marsch, E., and Maksimovic, M.: On spectral
breaks in the power spectra of magnetic fluctuations in fast solar wind
between 0.3 and 0.9 AU, Astrophys. J., 749, 102,
https://doi.org/10.1088/0004-637X/749/2/102, 2012. a
Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Laboratory, Living
Rev. Sol. Phys., 10, 2, https://doi.org/10.12942/lrsp-2013-2, 2013. a
Bruno, R., Carbone, V., Veltri, P. L., Pietropaolo, E., and Bavassano, B.:
Identifying intermittency events in the solar wind, Planet Space Sci. 49,
1201–1210, 2001. a
Chandran, B. D. G., Pongkitiwanichakul, P., Isenberg, P. A., Lee, M. A.,
Markovskii, S. A., Hollweg, J. A., and Vasquez, B. J.: Resonant interactions
between protons and oblique Alfvén/ion-cyclotron waves in the solar corona
and solar flares, Astrophys. J., 722, 710–720,
https://doi.org/10.1088/0004-637X/722/1/710, 2010. a
Cranmer, S. R.: Coronal holes and the high-speed solar wind, Space Sci. Rev.,
101, 229–294, 2002. a
Cranmer, S. R.: Coronal holes, Living Rev. Sol. Phys., 6, 3,
https://doi.org/10.12942/lrsp-2009-3, 2009. a
Cranmer, S. R. and van Ballegooijen, A. A.: Can the solar wind be driven by
magnetic reconnection in the Sun's magnetic carpet?, Astrophys. J., 720,
824–847, 2010. a
Cranmer, S. R., van Ballegooijen, A. A., and Edgar, R. J.: Self-consistent
coronal heating and solar wind acceleration from anisotropic
magnetohydrodynamic turbulence, Astrophys. J. Suppl. S., 171, 520–551, 2007. a
Cranmer, S. R., van Ballegooijen, A. A., and Woolsey, L. N.: Connecting the
Sun's high-resolution magnetic carpet to the turbulent heliosphere,
Astrophys. J., 767, 125, https://doi.org/10.1088/0004-637X/767/2/125, 2013. a
Denskat, K. U. and Neubauer, F. M.: Statistical properties of low-frequency
magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during
solar minimum conditions – HELIOS 1 and HELIOS 2, J. Geophys. Res., 87,
2215–2223, 1982. a
Denskat, K. U. and Neubauer, F. M.: Observations of hydromagnetic turbulence
in the solar wind, in: Solar Wind Five, edited by: Neugebauer, M., 81–92,
N84-13067 03-92, Jet Propulsion Laboratory, USA, 1983. a
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T.
D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S., Katsukawa, Y.,
Ichimoto, K., Suematsu, Y., Shimizu, T., and Nagata, S.: Chromospheric
Alfvénic Waves Strong Enough to Power the Solar Wind, Science, 318,
1574–1577, https://doi.org/10.1126/science.1151747, 2007. a
Dum, C. T.: Classical transport properties of plasmas, in: Physical Processes
in Hot Cosmic Plasmas, edited by: Brinkmann, W., et al., 157–180, Kluwer
Academic Publishers, the Netherlands, 1990. a
Feldman, W. C. and Marsch, E.: Kinetic Phenomena in the Solar Wind, in:
Cosmic Winds and the Heliosphere, edited by: Jokipii, J. R., Sonett, C. P.,
and Giampapa, M. S., The University of Arizona Press, Tucson, USA, 617–676,
1997. a
Fisk, L. A., Schwadron, N. A., and Zurbuchen, T. H.: Acceleration of the fast
solar wind by the emergence of new magnetic flux, J. Geophys. Res., 104,
19765–19772, 1999. a
Fleck, B. and Svestka, Z. (Eds.): The First Results from SOHO, Kluwer
Academic Publishers, Dordrecht, the Netherlands, 1997. a
Fleck, B., Domingo, V., and Poland, A. I. (Eds.): The SOHO Mission, Kluwer
Academic Publishers, Dordrecht, the Netherlands, 1995. a
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R.
A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K.,
McComas, D. J., Raouafi, N. E., and Szabo, A.: The Solar Probe Plus Mission:
Humanity's First Visit to Our Star, Space Sci. Rev., 204, 7–48,
https://doi.org/10.1007/s11214-015-0211-6, 2016. a
Gary, S. P.: Electromagnetic ion/ion instabilities and their consequences in
space plasmas: a review, Space Sci. Rev., 56, 373–415, 1991. a
Gary, S. P.: Theory of Space Plasma Microinstabilities, Cambridge Univ.
Press, New York, 1993. a
Gary, S. P. and Saito, S.: Particle-in-cell simulations of Alfvén-cyclotron
wave scattering: Proton velocity distributions, J. Geophys. Res., 108, 1194,
https://doi.org/10.1029/2002JA009824, 2003. a
Gary, S. P., Skoug, R. M., Steinberg, J. T., and Smith, C.W.: Proton
temperature anisotropy constraint in the solar wind: ACE observations,
Geophys. Res. Lett., 28, 2759, https://doi.org/10.1029/2001GL013165, 2001. a
Gary, S. P., Smith, C. W., and Skoug, R. M.: Signatures of Alfvén-cyclotron
wave-ion scattering: Advanced Composition Explorer (ACE) solar wind
observations, J. Geopyhs. Res., 110, A07108, https://doi.org/10.1029/2004JA010569, 2005. a
Gary, S. P., Jian, L. K., Broiles, T. W., Stevens, M. L., Podesta, J. J., and
Kasper, J. C.: Ion-driven instabilities in the solar wind: Wind observations
of 19 March 2005, J. Geophys. Res., 121, 30–41, https://doi.org/10.1002/2015JA021935,
2015. a
Grappin, R., Mangeney, A., and Marsch, E.: On the Origin of Solar Wind MHD
Turbulence: Helios Data Revisited, J. Geophys. Res., 95, 8197–8209,
https://doi.org/10.1029/JA095iA06p08197, 1990. a
Groŝelj, D., Cerri, S. S., Navarro, A. B., Willmott, C., Told, D.,
Loureiro, N. F., Califano, F., and Jenko, F.: Fully Kinetic versus
Reduced-kinetic Modeling of Collisionless Plasma Turbulence, Astrophys. J.,
847, 28, https://doi.org/10.3847/1538-4357/aa894d, 2017. a, b, c
Gurnett, D. A., Kurth, W. S., Burlaga, L. F., and Ness, N. F.: In Situ
Observations of Interstellar Plasma with Voyager 1, Science, 341, 1489–1492,
2013. a
Hansteen, V. H. and Velli, M.: Solar Wind Models from the Chromosphere to
1 AU, Space Sci. Rev., 172, 89–121, https://doi.org/10.1007/s11214-012-9887-z, 2012. a
Hassler, D. A., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason,
H. E., Vial, J.-C., and Wilhelm, K.: Solar Wind Outflow and the Chromospheric
Magnetic Network, Science, 283, 810–813, https://doi.org/10.1126/science.283.5403.810,
1999. a
He, J.-S., Tu, C.-Y., and Marsch, E.: Modeling of Solar Wind in the Coronal
Funnel with Mass and Energy Supplied at 5 Mm, Solar Phys., 250, 147–158,
https://doi.org/10.1007/s11207-008-9214-8, 2008. a, b
He, J., Marsch, E., Tu, C., Yao, S., and Tian, H.: Possible evidence of
Alfvén-cyclotron waves in the angle distribution of magnetic helicity of
solar wind turbulence, Astrophys. J., 731, 85,
https://doi.org/10.1088/0004-637X/731/2/85, 2011. a
He, J., Tu, C.-Y., Marsch, E., Bourouaine, S., and Pei, Z.: Radial evolution
of the wave vector anisotropy of solar wind turbulence between 0.3 and
1.0 AU, Astrophys. J., 773, 72, https://doi.org/10.1088/0004-637X/773/1/72, 2013. a
He, J., Wang, L., Tu, C., Marsch, E., and Zong, Q.: Evidence of Landau and
cyclotron resonance between protons and kinetic waves in solar wind
turbulence, Astrophys. J. Lett., 800, L31, https://doi.org/10.1088/2041-8205/800/2/L31,
2015. a
Hellinger, P., Trávníĉek, P., Kasper, J. C., and Lazarus, A. J.: Solar
wind proton temperature anisotropy: Linear theory and WIND/SWE observations,
Geophys. Res. Lett., 33, L09101, https://doi.org/10.1029/2006GL025925, 2006. a
Heuer, M. and Marsch, E.: Diffusion plateaus in the velocity distributions of
fast solar wind protons, J. Geophys. Res., 112, A03102,
https://doi.org/10.1029/2006JA011979, 2007. a, b
Hollweg, J. V.: Kinetic Alfvén wave revisited, J. Geophys. Res., 104,
14811–14820, 1999. a
Hollweg, J. V. and Isenberg, P. A.: Generation of the fast solar wind: A
review with emphasis on the resonant cyclotron interaction, J. Geophys. Res.,
107, SSH 12-1–SSH 12-37, https://doi.org/10.1029/2001JA000270, 2002. a
Horbury, T. S., Balogh, A., Forsyth, R. J., and Smith, E. J.: The rate of
turbulent evolution over the Sun's poles, Astron. Astrophys., 316, 333–341,
1996. a
Horbury, T. S., Balogh, A., Forsyth, R. J., and Smith, E. J.: Anisotropic
Scaling of Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 101, 175005,
https://doi.org/10.1103/PhysRevLett.101.175005, 2008. a, b, c
Horbury, T. S., Wicks, R. T., and Chen, C. H. K.: Anisotropy in Space Plasma
Turbulence: Solar Wind Observations, Space Sci. Rev., 172, 325–342,
https://doi.org/10.1007/s11214-011-9821-9, 2012. a
Howes, G. G.: A Prospectus on Kinetic Heliophysics, Phys. Plasmas, 24,
055907, https://doi.org/10.1063/1.4983993, 2017. a, b
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E., and
Schekochihin, A. A.: Astrophysical gyrokinetics: Basic equations and linear
theory, Astrophys. J., 651, 590–614, 2006. a
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E., and
Schekochihin, A. A.: A model of turbulence in magnetized plasmas:
implications for the dissipation range in the solar wind, J. Geophys. Res.,
113, A05103, https://doi.org/10.1029/2007JA012665, 2008. a, b
Howes, G. G., Bale, S. D., Klein, K. G., Chen, C. H. K., Salem, C. S., and
TenBarge, J. M.: The slow-mode nature of compressible wave power in solar
wind turbulence, Astrophys. J., 753, L19, https://doi.org/10.1088/2041-8205/753/1/L19,
2012. a, b
Hughes, R. S., Gary, S. P., Wang, J., and Parashar, T. N.: Kinetic Alfvén
Turbulence: Electron and Ion Heating by Particle-in-cell Simulations,
Astrophys. J. Lett., 847, L14, https://doi.org/10.3847/2041-8213/aa8b13, 2018. a, b
Jian, L. K., Russell, C. T., Luhmann, J. G., Strangeway, R. J., Leisner, J.
S., and Galvin, A. B.: Ion cyclotron waves in the solar wind observed by
STEREO near 1 AU, Astrophys. J., 701, L105–L109,
https://doi.org/10.1088/0004-637X/701/2/L105, 2009. a
Jian, L. K., Russell, C. T., Luhmann, J. G., Anderson, B. J., Boardsen, S.
A., Strangeway, R. J., Cowee, M. M., and Wennmacher, A.: Observations of ion
cyclotron waves in the solar wind near 0.3 AU, J. Geophys. Res., 115,
A12115, https://doi.org/10.1029/2010JA015737, 2010. a
Kasper, J. C., Lazarus, A. J., and Gary, S. P.: Wind/SWE observations of
firehose constraint on solar wind proton temperature anisotropy, Geophys.
Res. Lett., 29, 1839, https://doi.org/10.1029/2002GL015128, 2002. a
Lie-Svendsen, Ø., Hansteen, V. H., and Leer, E.: Kinetic electrons in
high-speed solar wind streams: Formation of high-energy tails, J. Geophys.
Res., 102, 4701–4718, 1997. a
Livi, S. and Marsch, E.: On the Collisional Relaxation of Solar Wind Velocity
Distributions, Ann. Geophys. A-Upper, 4, 333–340, 1986. a
Livi, S. and Marsch, E.: Generation
of Solar Wind Proton Tails and Double Beams by Coulomb Collisions, J.
Geophys. Res., 92, 7255–7261, https://doi.org/10.1029/JA092iA07p07255, 1987. a
Malara, F. and Velli, M.: Parametric instability of a large amplitude
non-monochromatic Alfvén wave, Phys. Plasmas, 3, 4427,
https://doi.org/10.1063/1.872043, 1996. a
Maneva, Y. G., Viñas, A. F., and Ofman, L.: Turbulent heating and
acceleration of ions by spectra of Alfvén-cyclotron waves in
the expanding solar wind: 1.5-D hybrid simulations, J. Geophys. Res.-Space,
118, 2842–2853, https://doi.org/10.1002/jgra.50363, 2013. a
Maneva, Y. G., Araneda, J. A., and Marsch, E.: Regulation of ion drifts and
anisotropies by parametrically unstable finite-amplitude Alfvén-cyclotron
waves in the fast solar wind, Astrophys. J., 783, 139,
https://doi.org/10.1088/0004-637X/783/2/139, 2014. a
Marsch, E.: Kinetic Physics of the Solar Wind Plasma, Vol. II of Physics of
the Inner Heliosphere, edited by: Schwenn, R. and Marsch, E.,
Springer-Verlag, Heidelberg, 45–133, 1991. a
Marsch, E.: Solar wind models from the Sun to 1 AU: Constraints by in situ
and remote sensing measurements, Proceedings of the SOHO-7 Workshop, Space
Sci. Rev., 87, 1–24, https://doi.org/10.1023/A:1005137311503, 1999. a
Marsch, E.: Kinetic Physics of the Solar Corona and Solar Wind, Living Rev.
Sol. Phys., 3, 1, https://doi.org/10.12942/lrsp-2006-1, 2006. a, b
Marsch, E. and Bourouaine, S.: Velocity-space diffusion of solar wind protons
in oblique waves and weak turbulence, Ann. Geophys., 29, 2089–2099,
https://doi.org/10.5194/angeo-29-2089-2011, 2011. a, b, c
Marsch, E. and Livi, S.: Coulomb Self-Collision Frequencies for Non-thermal
Velocity Distributions in the Solar Wind, Ann. Geophys., 3, 545–556, 1985. a
Marsch, E. and Richter, A. K.: Distribution of Solar Wind Angular Momentum
between Particles and Magnetic Field: Inferences about the Alfvén Critical
Point from Helios Observations, J. Geophys. Res., 89, 5386–5394,
https://doi.org/10.1029/JA089iA07p05386, 1984. a
Marsch, E. and Schwenn, R. (Eds.): Introduction, Vol. I of Physics of the
Inner Heliosphere, Springer-Verlag, Heidelberg, 1–12, 1990. a
Marsch, E. and Tu, C.-Y.: On the Radial Evolution of MHD Turbulence in the
Inner Heliosphere, J. Geophys. Res., 95, 8211–8229,
https://doi.org/10.1029/JA095iA06p08211, 1990a. a, b
Marsch, E. and Tu, C.-Y.: Spectral and spatial evolution of compressible
turbulence in the inner solar wind, J. Geophys. Res., 95, 11945–11956,
https://doi.org/10.1029/JA095iA08p11945, 1990b. a
Marsch, E. and Tu, C.-Y.: Evidence for pitch-angle diffusion of solar wind
protons in resonance with cyclotron waves, J. Geophys. Res., 106, 8357–8361,
https://doi.org/10.1029/2000JA000414, 2001. a
Marsch, E. and Tu, C.-Y.: Heating and acceleration of coronal ions
interacting with plasma waves through cyclotron and Landau resonance, J.
Geophys. Res., 106, 227–238, https://doi.org/10.1029/2000JA000042, 2001. a
Marsch, E., Schwenn, R., Rosenbauer, H., Mühlhäuser, K.-H., Pilipp, W.,
and Neubauer, F. M.: Solar Wind Protons: Three-Dimensional Velocity
Distributions and Derived Plasma Parameters Measured Between 0.3 and 1 AU,
J. Geophys. Res., 87, 52–72, https://doi.org/10.1029/JA087iA01p00052, 1982a. a, b
Marsch, E., Rosenbauer, H., Schwenn, R., Mühlhäuser, K.-H., and Neubauer,
F. M.: Solar Wind Helium Ions: Observations of the Helios Solar Probes
between 0.3 and 1 AU, J. Geophys. Res., 87, 35–51,
https://doi.org/10.1029/JA087iA01p00035, 1982b. a
Marsch, E., Harrison, R., Pace, O., Antonucci, E., Bochsler, P., Bougeret,
J.-L., Fleck, B., Langevin, Y., Marsden, R., Schwenn, R., and Vial, J.-C.:
Solar Orbiter, a high-resolution mission to the Sun and inner heliosphere,
Proceedings of Solar Encounter: The First Solar Orbiter Workshop, Puerto de
la Cruz, Tenerife, Spain, ESA SP-493, xi–xxvi, 2001. a
Marsch, E., Zhou, G.-Q., He, J.-S., and Tu, C.-Y.: Magnetic structure of the
solar transition region as observed in various ultraviolet lines emitted at
different temperatures, Astron. Astrophys., 457, 699–706,
https://doi.org/10.1051/0004-6361:20065665, 2006a. a
Marsch, E., Zhao, L., and Tu, C.-Y.: Limits on the core temperature
anisotropy of solar wind protons, Ann. Geophys., 24, 2057–2063,
https://doi.org/10.5194/angeo-24-2057-2006, 2006b. a, b
Matteini, L., Landi, S., Velli, M., and Hellinger, P.: Kinetics of parametric
instabilities of Alfvén waves: Evolution of ion distribution functions, J.
Geophys. Res., 115, A09106, https://doi.org/10.1029/2009JA014987, 2010a. a
Matteini, L., Landi, S., Del Zanna, L., Velli, M., and Hellinger, P.:
Parametric decay of linearly polarized shear Alfvén waves in oblique
propagation: One and two-dimensional hybrid simulations, Geophys. Res. Lett.,
37, L20101, https://doi.org/10.1029/2010GL044806, 2010b. a
Matteini, L., Hellinger, P., Landi, S., Trávníĉek, P. M., and Velli,
M.: Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local
Microphysics, Space Sci. Rev., 172, 373–396, https://doi.org/10.1007/s11214-011-9774-z,
2012. a, b
McComas, D. J., Barraclough, B. L., Gosling, J. T., Hammond, C. M., Phillips,
J. L., Neugebauer, M., Balogh, A., and Forsyth, R. J.: Structures in the
polar solar wind: Plasma and field observations from Ulysses, J. Geophys.
Res., 100, 19893–19902, https://doi.org/10.1029/95JA01634, 1995. a, b
McComas, D. J., Riley, P., Gosling, J. T., Balogh, A., and Forsyth, R.:
Ulysses' rapid crossing of the polar coronal hole boundary, J. Geophys. Res.,
103, 1955–1967, 1998. a
McIntosh, S. W.: Recent Observations of Plasma and Alfvénic Wave Energy
Injection at the Base of the Fast Solar Wind, Space Sci. Rev., 172, 69–87,
https://doi.org/10.1007/s11214-012-9889-x, 2012. a
Meyer-Vernet, N.: Basics of the Solar Wind, Cambridge University Press,
Cambridge, UK, 2007. a
Müller, D., Marsden, R. G., St. Cyr, O. C., and Gilbert, H. R.: The Solar
Orbiter Team: Solar Orbiter Exploring the Sun-Heliosphere
Connection, Solar Phys., 285, 25–70, https://doi.org/10.1007/s11207-012-0085-7, 2013. a
Narita, Y.: Space–time structure and wavevector anisotropy in space plasma
turbulence, Living Rev. Sol. Phys., 15, 2, https://doi.org/10.1007/s41116-017-0010-0,
2018. a
Narita, Y. and Marsch, E.: Kinetic slow mode in the solar wind and its
possible role in turbulence dissipation and ion heating, Astrophys. J., 805,
24, https://doi.org/10.1088/0004-637X/805/1/24, 2015. a, b
Narita, Y., Marsch, E., Perschke, C., Glassmeier, K.-H., Motschmann, U., and
Comisel, H.: Wave–particle resonance condition test for ion-kinetic waves in
the solar wind, Ann. Geophys., 34, 393–398,
https://doi.org/10.5194/angeo-34-393-2016, 2016a. a
Narita, Y., Nakamura, R., Baumjohann, W., Glassmeier, K.-H., Motschmann, U.,
Giles, B., Magnes, W., Fischer, W., Torbert, R. B., Russell, C. T.,
Strangeway, R. J., Burch, J. L., Nariyuki, Y., Saito, S., and Gary, S. P.: On
electron-scale whistler turbulence in the solar wind, Astropyhs. J. Lett.,
827, L8, https://doi.org/10.3847/2041-8205/827/1/L8, 2016b. a
Neugebauer, M., Goldstein, B. E., McComas, D. J., Suess, S. T., and Balogh,
A.: Ulysses observations of microstreams in the solar wind from coronal
holes, J. Geophys. Res., 100, 23389–23396, https://doi.org/10.1029/95JA02723, 1995. a
Parker, E. N.: Dynamics of the Interplanetary Gas and Magnetic Fields,
Astrophys. J., 128, 664, https://doi.org/10.1086/146579, 1958. a
Parker, E. N.: Dynamical Theory of the Solar Wind, Space Sci. Rev., 4,
666–708, 1965. a
Pierrard, V.: Solar Wind Electron Transport: Interplanetary Electric Field
and Heat Conduction, Space Sci. Rev., 172, 315–324,
https://doi.org/10.1007/s11214-011-9743-6, 2012. a
Pierrard, V., Maksimovic, M., and Lemaire, J.: Electron velocity distribution
functions from the solar wind to the corona, J. Geophys. Res., 104,
17021–17032, 1999. a
Pillip, W. G., Miggenrieder, H., Mühlhäuser, K.-H., Rosenbauer, H.,
Schwenn, R., and Neubauer, F. M.: Variations of Electron Distribution
Functions in the Solar Wind, J. Geophys. Res., 92, 1103–1118, 1987b. a
Podesta, J. J.: Evidence of Kinetic Alfvén Waves in the Solar Wind at
1 AU, Solar Phys., 286, 529–548, https://doi.org/10.1007/s11207-013-0258-z, 2013. a
Priest, E.: Our dynamic sun: 2017 Hannes Alfvén Medal lecture at the EGU,
Ann. Geophys., 35, 805–816, https://doi.org/10.5194/angeo-35-805-2017, 2017. a, b
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G.
G., Plunk, G. G., Quataert, E., and Tatsuno, T.: Gyrokinetic turbulence: a
nonlinear route to dissipation through phase space, Plasma Phys. Control.
Fusion, 50, 124024, https://doi.org/10.1088/0741-3335/50/12/124024, 2008. a
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G.
G., Quataert, E., and Tatsuno, T.: Astrophysical gyrokinetics: Kinetic and
fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys.
J. Suppl. S., 182, 310–377, 2009. a
Shoda, M., Yokoyama, T., and Suzuki, T. K.: Frequency-dependent Alfvén-wave
propagation in the solar wind: Onset and suppression of parametric decay
instability, Astrophys. J., 860, 11 pp., https://doi.org/10.3847/1538-4357/aac218,
2018. a
Smith, H. M., Marsch, E., and Helander, P.: Electron Transport in the Fast
Solar Wind, Astrophys. J., 752, 31, https://doi.org/10.1088/0004-637X/753/1/31, 2012. a, b
Suess, S. T., Wang, A.-H., Wu, S. T., Poletto, G., and McComas, D. J.: A
two-fluid, MHD coronal model, J. Geophys. Res., 104, 4697–4708, 1999. a
Thieme, K. M., Marsch, E., and Schwenn, R.: Spatial Structures in High-Speed Streams as Signatures of
Fine Structures in Coronal Holes, Ann. Geophys., 8, 713–724, 1990. a
Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley,
D. H., and Edmondson, J.: Alfvén Waves in the Solar Corona, Science, 317,
1192, https://doi.org/10.1126/science.1143304, 2007. a
Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier, K.-H.,
and Mannucci, A. J.: A review of Alfvénic turbulence in high-speed solar
wind streams: Hints from cometary plasma turbulence, J. Geophys. Res., 123,
2458–2492, https://doi.org/10.1002/2017JA024203, 2018. a
Tu, C.-Y. and Marsch, E.: A model of solar wind fluctuations with two
components: Alfvén waves and convective structures, J. Geophys. Res., 98,
1257–1276, https://doi.org/10.1029/92JA01947, 1993. a
Tu, C.-Y. and Marsch, E.: Two-fluid model for heating of the solar corona and
acceleration of the solar wind by high-frequency Alfvén waves, Solar Phys.,
171, 363–391, 1997. a
Tu, C.-Y. and Marsch, E.: Anisotropy regulation and plateau formation through
pitch-angle diffusion of solar wind protons in resonance with cyclotron
waves, J. Geophys. Res., 107, 1249, https://doi.org/10.1029/2001JA000150, 2002. a
Tu, C.-Y., Marsch, E., and Thieme, K. M.: Basic Properties of Solar Wind MHD
Turbulence Near 0.3 AU Analysed by Means of Elsässer Variables, J.
Geophys. Res., 94, 11739–11759, https://doi.org/10.1029/JA094iA09p11739, 1989. a
Tu, C.-Y., Wang, L.-H., and Marsch, E.: Formation of the proton beam
distribution in high-speed solar wind, J. Geophys. Res., 107, 1291,
https://doi.org/10.1029/2002JA009264, 2002. a
Tu, C.-Y., Marsch, E., and Qin, Z.-R.: Dependence of the proton beam drift
velocity on the proton core plasma beta in the solar wind, J. Geophys. Res.,
109, A05101, https://doi.org/10.1029/2004JA010391, 2004. a
Tu, C. Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., and
Wilhelm, K.: Solar Wind Origin in Coronal Funnels, Science, 308, 519–523,
https://doi.org/10.1126/science.1109447, 2005. a, b
Velli, M.: On the Propagation of Ideal, Linear Alfvén Waves in Radially
Stratified Stellar Atmospheres and Winds, Astron. Astrophys., 270, 304–314,
1993. a
Velli, M., Grappin, R., and Mangeney, A.: Waves From the Sun?, Geophys.
Astro. Fluid, 62, 101, https://doi.org/10.1080/03091929108229128, 1992. a
Verdini, A. and Velli, M.: Alfvén Waves and Turbulence in the Solar
Atmosphere and Solar Wind, Astrophys J., 662, 669–676, https://doi.org/10.1086/510710,
2007. a
Verdini, A., Velli, M., and Oughton, S.: Propagation and dissipation of
Alfvén waves in stellar atmospheres permeated by isothermal winds, Astron.
Astrophys, 444, 233–244, 2005. a
Verdini, A., Velli, M., Matthaeus, W., Oughton, S., and Dmitruk, P.: A
Turbulence–Driven Model for Heating and Acceleration of the Fast Wind in
Coronal Holes, Astrophys. J., 708, L116–L120,
https://doi.org/10.1088/2041-8205/708/2/L116, 2010. a
Verscharen, D. and Marsch, E.: Apparent temperature anisotropies due to wave
activity in the solar wind, Ann. Geophys., 29, 909–917,
https://doi.org/10.5194/angeo-29-909-2011, 2011. a
Verscharen, D., Marsch, E., Motschmann, U., and Müller, J.: Kinetic cascade
beyond MHD of solar wind turbulence in two-dimensional hybrid simulations,
Phys. Plasma, 19, 022305, https://doi.org/10.1063/1.3682960, 2012. a
Verscharen, D., Marsch, E., Motschmann, U., and Müller, J.: Parametric
decay of oblique Alfvén waves in two-dimensional hybrid simulations, Phys.
Rev. E, 86, 02740, https://doi.org/10.1103/PhysRevE.86.027401, 2012.
a
Verscharen, D., Chen, C. H. K., and Wicks, R. T.: On Kinetic Slow Modes,
Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind,
Astrophys. J., 840, 106, https://doi.org/10.3847/1538-4357/aa6a56, 2017. a
Vocks, C.: Kinetic Models for Whistler Wave Scattering of Electrons in the
Solar Corona and Solar Wind, Space Sci. Rev., 172, 303–314,
https://doi.org/10.1007/s11214-011-9749-0, 2014. a
Wang, Y.-M.: Semi-empirical Models of the Slow and Fast Solar Wind, Space
Sci. Rev., 172, 123–143, https://doi.org/10.1007/s11214-010-9733-0, 2012. a
Wang, X., He, J., Tu, C.-Y., Marsch, E., Zhang, L., and Chao, J.-K.:
Large-amplitude Alfvén wave in interplanetary space: The WIND spacecraft
observations, Astrophys. J., 746, 146, https://doi.org/10.1088/0004-637X/746/2/147, 2012. a, b
Wicks, R. T., Horbury, T. S., Chen, C. H. K., and Schekochihin, A. A.: Power
and spectral index anisotropy of the entire inertial range of turbulence in
the fast solar wind, Mon. Not. R. Astron. Soc., 407, L31–L35,
https://doi.org/10.1111/j.1745-3933.2010.00898.x, 2010. a
Wiegelmann, T. and Solanki, S. K.: Why are Coronal Holes Indistinguishable
from the Quiet Sun in Transition Region Radiation?, ESA SP-575, Proceedings
of the SOHO 15 Workshop – Coronal Heating, 6–9 September 2004, St. Andrews,
Scotland, UK, edited by: Walsh, R. W., Ireland, J., Danesy, D., Fleck, B.,
Paris, European Space Agency, 35 pp., 2004. a, b
Wiegelmann, T., Xia, L. D., and Marsch, E.: Links between magnetic fields and
plasma flows in a coronal hole, Astron. Astrophys., 432, L1–L4,
https://doi.org/10.1051/0004-6361:200500029, 2005. a
Wiegelmann, T., Petrie, G. J. D., and Riley, P.: Coronal Magnetic Field
Models, Space Sci. Rev., 210, 249–274, https://doi.org/10.1007/s11214-015-0178-3, 2017. a
Wilhelm, K.: SUMER Observations of Coronal-Hole Temperatures, Space Sci.
Rev., 172, 57–68, https://doi.org/10.1007/s11214-010-9700-9, 2012. a
Wilhelm, K., Dammasch, I. E., Marsch, E., and Hassler, D. M.: On the source
regions of the fast solar wind in polar coronal holes, Astron. Astrophys.,
353, 749–756, 2000. a
Wilhelm, K., Marsch, E., Dwivedi, B. N., and Feldman, U.: Observations of the
Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and
Interpretations, Space Sci. Rev., 133, 103–179,
https://doi.org/10.1007/s11214-007-9285-0, 2007. a
Yao, S., He, J.-S., Marsch, E., Tu, C.-Y., Pedersen, A., Rème, H., and
Trotignon, J. G.: Multi-scale anticorrelation between electron density and
magnetic field strength in the solar wind, Astrophys. J., 728, 146,
https://doi.org/10.1088/0004-637X/728/2/146, 2011. a, b
Short summary
This paper originated from the lecture I gave as the Hannes Alfvén medalist at the EGU General Assembly in Vienna in spring 2018. The paper
reviews various aspects of modern solar wind physics and elucidates the role Alfvén waves play in solar wind acceleration and turbulence, which prevail in the low
corona and inner heliosphere. Our understanding of the solar wind has recently made considerable progress based on remote sensing, in situ measurements, kinetic
simulation and fluid modeling.
This paper originated from the lecture I gave as the Hannes Alfvén medalist at the EGU General...