Articles | Volume 36, issue 5
https://doi.org/10.5194/angeo-36-1319-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1319-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multisatellite observations of the magnetosphere response to changes in the solar wind and interplanetary magnetic field
IPST, University of Maryland, College Park, MD, USA
IZMIRAN, Russian Academy of Sciences, Moscow, Troitsk, Russia
David Sibeck
NASA/GSFC, Code 674, Greenbelt, MD, USA
Scott Thaller
College of Science and Engineering, University of Minnesota,
Minneapolis, MN, USA
LASP, University of Colorado, Boulder, CO, USA
John Wygant
College of Science and Engineering, University of Minnesota,
Minneapolis, MN, USA
Harlan Spence
EOS, University of New Hampshire, Durham, NH, USA
Craig Kletzing
Department of Physics and Astronomy, Iowa University, Iowa City, IA,
USA
Vassilis Angelopoulos
Department of Earth, Planetary and Space sciences, UCLA, Los Angeles,
CA, USA
Robert Redmon
Solar and Terrestrial Physics division, NGDC/NOAA, Boulder, CO, USA
Related authors
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Michael Gedalin, Xiaoyan Zhou, Christopher T. Russell, and Vassilis Angelopoulos
Ann. Geophys., 38, 17–26, https://doi.org/10.5194/angeo-38-17-2020, https://doi.org/10.5194/angeo-38-17-2020, 2020
Short summary
Short summary
High-resolution measurements of the magnetic profiles of collisionless shocks in space show that large amplitude oscillations appear on the high-magnetic field side. The positions and relative amplitude of these oscillations are shown theoretically to vary in accordance with the potential jump at the shock crossing. The theoretically predicted variety is confirmed by observations.
Ying Zou, Brian M. Walsh, Yukitoshi Nishimura, Vassilis Angelopoulos, J. Michael Ruohoniemi, Kathryn A. McWilliams, and Nozomu Nishitani
Ann. Geophys., 37, 215–234, https://doi.org/10.5194/angeo-37-215-2019, https://doi.org/10.5194/angeo-37-215-2019, 2019
Short summary
Short summary
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the Earth. Whether the process is spatially patchy or spatially continuous and extended has been under long debate. We use space–ground coordination to overcome the limitations of previous studies and reliably interpret spatial extent. Our result strongly indicates that both patchy and extended reconnection is possible and, interestingly, that extended reconnection grows from a localized patch via spreading.
Run Shi, Wen Li, Qianli Ma, Seth G. Claudepierre, Craig A. Kletzing, William S. Kurth, George B. Hospodarsky, Harlan E. Spence, Geoff D. Reeves, Joseph F. Fennell, J. Bernard Blake, Scott A. Thaller, and John R. Wygant
Ann. Geophys., 36, 781–791, https://doi.org/10.5194/angeo-36-781-2018, https://doi.org/10.5194/angeo-36-781-2018, 2018
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
Zheng Xiang, Binbin Ni, Chen Zhou, Zhengyang Zou, Xudong Gu, Zhengyu Zhao, Xianguo Zhang, Xiaoxin Zhang, Shenyi Zhang, Xinlin Li, Pingbing Zuo, Harlan Spence, and Geoffrey Reeves
Ann. Geophys., 34, 493–509, https://doi.org/10.5194/angeo-34-493-2016, https://doi.org/10.5194/angeo-34-493-2016, 2016
Short summary
Short summary
We used 14 satellites(GOES, POES, THEMIS, RBSP, FENGYUN, REPTile) measurement to investigate the loss mechanisms of a electron dropout event during a intense solar wind dynamic pressure pulse. The observations demonstrated that magnetopause shadowing and atmospheric loss both play important roles in electron flux dropout. Moreover, substrom injections and convection strongly enhanced the energetic electron fluxes, which may delay other than avoid the occurrence of electron flux dropout.
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
F. Plaschke, H. Hietala, and V. Angelopoulos
Ann. Geophys., 31, 1877–1889, https://doi.org/10.5194/angeo-31-1877-2013, https://doi.org/10.5194/angeo-31-1877-2013, 2013
J. Liang, F. Jiang, E. Donovan, E. Spanswick, V. Angelopoulos, and R. Strangeway
Ann. Geophys., 31, 1077–1101, https://doi.org/10.5194/angeo-31-1077-2013, https://doi.org/10.5194/angeo-31-1077-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Energetic particles, trapped
Earth's radiation belts' ions: patterns of the spatial-energy structure and its solar-cyclic variations
Relative positions of the polar boundary of the outer electron radiation belt and the equatorial boundary of the auroral oval
Alexander S. Kovtyukh
Ann. Geophys., 38, 137–147, https://doi.org/10.5194/angeo-38-137-2020, https://doi.org/10.5194/angeo-38-137-2020, 2020
Short summary
Short summary
Spatial-energy distributions of the stationary fluxes of protons, helium ions, and ions of the carbon–nitrogen–oxygen (CNO) group in the Earth's radiation belts (ERBs) are considered here using data from satellites from 1961 to 2017. It is found that the results of these measurements line up, with some regular patterns present. Solar-cyclic (11-year) variations in the distributions of protons, helium ions, and CNO group ion fluxes in the ERB are presented.
Maria O. Riazanteseva, Elizaveta E. Antonova, Marina V. Stepanova, Boris V. Marjin, Ilia A. Rubinshtein, Vera O. Barinova, and Nikita V. Sotnikov
Ann. Geophys., 36, 1131–1140, https://doi.org/10.5194/angeo-36-1131-2018, https://doi.org/10.5194/angeo-36-1131-2018, 2018
Short summary
Short summary
The position of the external boundary of the outer electron radiation belt (ORB), relative to the auroral oval's position, is hard to determine. It was done using simultaneous measurements of energetic and auroral electrons onboard METEOR-M1. Our analysis shows that the ORB boundary is often located inside the auroral oval and that the number of such events increases with growing geomagnetic activity. These results are relevant to our understanding of the topology of the geomagnetic field.
Cited articles
Abraham-Shrauner, B. and Yun, S. H.: Interplanetary shocks seen by Ames
Plasma Probe on Pioneer 6 and 7, J. Geophys. Res., 81, 2097–2102,
https://doi.org/10.1029/JA081i013p02097, 1976.
Araki, T.: A physical model of the geomagnetic sudden commencement, AGU
Geophys. Monogr., 81, 183–200, 1994.
Auster, H. U., Glassmeier, K.-H., Magnes, W., Aydogar, O., W. Baumjohann, W.,
Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka,
K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and
Wiedemann, M.: The THEMIS Fluxgate Magnetometer, Space Sci. Rev., 141,
235–264, https://doi.org/10.1007/s11214-008-9365-9, 2008.
Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J.
G., Glassmeier, K. H., Musmann, G., Lohr,H., Buchert, S., Acuña, M. H.,
Fairfield, D. H., Slavin, J. A., Riedler, W., K. Schwingenschuh, M.G.
Kivelson, M. G., and the Cluster Magnetometer Team: The Cluster Magnetic
Field Investigation, Space Sci. Rev., 79, 65–92, 1997.
Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain
Jr.,
W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., George,
J. S., Henderson, M. G., Lalic, M., Lin, A. Y., Looper, M. D., Mabry, D. J.,
Mazur, J. E., McCarthy, B., Nguyen, C. Q., O'Brien, T. P., Perez, M. A.,
Redding, M. T., Roeder, J. L., Salvaggio, D. J., Sorensen, G. A., Spence, H.
E., Yi, S., and Zakrzewski, M. P.: The Magnetic Electron Ion Spectrometer
(MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP)
Spacecraft, Space Sci. Rev., 179, 383–421, https://doi.org/10.1007/s11214-013-9991-8,
2013.
Blake, J. B., Kolasinski , W. A., Fillius, R. W., and Mullen, E. G.:
Injection of electrons and protons with energies of tens of MeV into L<3
on 24 March 1991, Geophys. Res. Lett., 19, 821–824, https://doi.org/10.1029/92GL00624,
1992
Claudepierre, S. G., Mann, I. R., Takahashi, K., Fennell, J. F., Hudson, M.
K., Blake, J. B., Roeder, J. L., Clemmons, J. H., Spence, H. E., Reeves, G.
D., Baker, D. N., Funsten, H.O., Friedel, R. H. W., Henderson, M. G.,
Kletzing, C. A., Kurth, W. S., MacDowall, R. J., Smith, C. W., and Wygant, J.
R.: Van Allen Probes Observation of Localized Drift-Resonance Between
Poloidal Mode Ultra-low Frequency Waves and 60 keV Electrons, Geophys. Res.
Lett., 40, 4491–4497, https://doi.org/10.1002/grl.50901, 2013.
Colburn, D. C. and Sonett, C. P.: Discontinuities in the solar wind, Space
Sci. Rev., 5, 439–506, 1966.
Foster, J., Wygant, J., Hudson, M., Boyd, A., Baker, D., Erickson, P., and
Spence, H. E.: Shock-induced prompt relativistic electron acceleration in the
inner magnetosphere, J. Geophys. Res. 120, 1661–1674,
https://doi.org/10.1002/2014JA020642, 2015.
Glassmeier, K. H. and Heppner, C.: Travelling magnetospheric twin-vortices:
Another case study, global characteristics and a model, J. Geophys. Res., 97,
3977–3992, https://doi.org/10.1029/91JA02464, 1992.
Halford, A. J., McGregor, S. L., Murphy, K. R., Millan, R. M., Hudson, M. K.,
Woodger, C. A., Cattel, L. A., Breneman, A. W., Mann, I. R., Kurth, W. S.,
Hospodarsky, G. B., Gkioulidou, M., and Fennell, J. F.: BARREL observations
of an ICME-Shock impact with the magnetosphere and the resultant radiation
belt electron loss, J. Geophys. Res.-Space, J. Geophys. Res., 120,
2557–2570, https://doi.org/10.1002/2014JA020873, 2015.
Hao, Y., Zong, Q.-G., Wang, Y., Zhou, X.-Z., Zhang, H., Fu, S., Pu, Z. Y.,
Spence, H. E., Blake, J. B., Bonnell, J., Wygant, J., and Kletzing, C.:
Interactions of energetic electrons with ULF waves triggered by
interplanetary shock: Van Allen Probes observations in
the magnetotail, J. Geophys. Res., 119, 8262–8273,
https://doi.org/10.1002/2014JA020023, 2014.
Kanekal, S. G., Baker, D. N., Fennell, J. F., Jones, A., Schiller, Q.,
Richardson, I. G., Li, X., Turner, D. L., Califf, S., Claudepierre, S. G.,
Wilson III, L. B., Jaynes, A.,. Blake, J. B., Reeves, G., Spence, H. E.,
Kletzing, C. A., and Wygant, J. R.: Prompt Acceleration of Magnetospheric
Electrons to Ultra-Relativistic Energies by the 17 March 2015 Interplanetary
Shock, J. Geophys. Res., 121, 7622–7635, https://doi.org/10.1002/2016JA022596, 2016.
Kim, K.-H., Park, K. S., Ogino, T., Lee, D.-H., Sung, S.-K., and Kwak Y.-S.:
Global MHD simulation of the geomagnetic sudden commencement on 21 October
1999, J. Geophys. Res., 114, A08212, https://doi.org/10.1029/2009JA014109, 2009.
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J, Torbert, R. B.,
Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., Crawford,
D., Dolan, J. S., Dvorsky R., Hospodarsky, G. B., Howard, J., Jordanova, V.,
Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J., Mark,
D., Pfaff Jr., Phillips, J. R. , Piker, C.W., Remington, S. L., Rowland, D.,
Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., and
Tyler, J. J.: The Electric and Magnetic Field Instrument Suite and Integrated
Science (EMFISIS) on RBSP, Space Sci. Rev., 179, 127–181,
https://doi.org/10.1007/s11214-013-9993-6, 2013.
Knott, K., Fairfield, D., Korth, A., and Young, D. T.: Observations near the
magnetopause at the onset of the July 29, 1977, sudden storm commencement, J.
Geophys. Res., 87, 5888–5894, https://doi.org/10.1029/JA087iA08p05888, 1982.
Lepping, R. P., Acuna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J.
A.,Schatfen, K. H., Mariani, E., Ness, N. E., Neubauer, E. M., Whang, Y. C.,
Byrnes J. B., Kennon R. S., Panetta, P. V., Scheifele J., and Worley, E. M.:
The WIND Magnetic field investigation, Space Sci Rev., 71, 207–229, 1995.
Li, X., Roth, I., Temerin, M., Wygant, J. R., Hudson, M. K., and Blake, J.
B.: Simulation of the prompt energization and transport of radiation belt
particles during the March 24, 1991, Geophys. Res. Lett., 20, 2423–2426,
https://doi.org/10.1029/93GL02701, 1993.
Liou, K., Newell, P. T., Meng, C.-I. , Wu, C.-C., and Lepping, R. P.:
Investigation of external triggering of substorms with Polar ultraviolet
imager observations, J. Geophys. Res., 108, 1364–1378,
https://doi.org/10.1029/2003JA009984, 2003.
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and
Ukhorskiy, A.: Science objectives and rationale for the radiation belt storm
probes mission, Space Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y,
2012.
McFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott,
B., Turin, P., Marckwordt, M., and Angelopoulos, V.: The THEMIS ESA plasma
instrument and in-flight calibration, Space Sci. Rev., 141, 277–302,
https://doi.org/10.1007/s11214-008-9440-2, 2008.
NASA: Coordinated Data Analysis Web, available at:
http://cdaweb.gsfc.nasa.gov/istp_public/, last access: 1 August 2018
NOAA: GOES SEM fata, available at:
http://satdat.ngdc.noaa.gov/sem/goes/data/new_full/, last access:
2 January 2018.
Nopper Jr., R. W., Hughes, W. J., MacLennan, C. G., and McPherron, R. L.:
Impulse-excited pulsations during the July 29, 1977, event, J. Geophys. Res.,
87, 5911–5916, https://doi.org/10.1029/JA087iA08p05911, 1982.
Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F.,
Keller, J., Lobell, J., Miller, G., Scudder, J. D., Sittler Jr., E.C.,
Torbert, R. B., Bodet, D., Needell, G., Lazarus, A. J., Steinberg, J. T.,
Tappan, J. H., Mavretic, A., and Gergin, E.: A comprehensive plasma
instrument for the WIND spacecraft, Space Sci. Rev., 71, 55–77,
https://doi.org/10.1007/BF00751326, 1995.
Oliveira, D. M. and Raeder, J.: Impact angle control of interplanetary shock
geoeffectiveness: A statistical study, J. Geophys. Res., 120, 4313–4323,
https://doi.org/10.1002/2015JA021147, 2015.
Samsonov, A. A., Sibeck, D. G., and Imber, J.: MHD simulation for the
interaction of an interplanetary shock with the Earth's magnetosphere, J.
Geophys. Res., 112, A12220, https://doi.org/10.1029/2007JA012627, 2007.
Schiller, O., Kanekal, S. G., Jian, L. K., Li, X., Jones, A., Baker, D. N.,
Jaynes, A., and Spence, H. E.: Prompt injections of highly relativistic
electrons induced by interplanetary shocks: A statistical study of Van Allen
Probes observations, Geophys. Res. Lett., 43, 12317–12324,
https://doi.org/10.1002/2016GL071628, 2016.
Schmidt, R. and Pedersen, A.: Signatures of storm sudden commencements in the
electric field measured at geostationary orbit (GEOS-2), Phys. Scr., 37,
491–495, 1988.
Shinbori, A., Ono, T., Iizima, M., Kumamoto, A., and Oya, H.: Sudden
commencements related plasma waves observed by the Akebono satellite in the
polar region and inside the plasmasphere region, J. Geophys. Res., 108, 1457,
https://doi.org/10.1029/2003JA009964, 2003.
Shinbori, A., Ono, T., Iizima, M., and Kumamoto, A.: SC related electric and
magnetic field phenomena observed by the Akebono satellite inside the
plasmasphere, Earth Planet. Space, 56, 269–282, 2004.
Sibeck, D. G.: A model for the transient magnetospheric response to sudden
solar wind dynamic pressure variations, J. Geophys. Res., 95, 3755–3771,
https://doi.org/10.1029/JA095iA04p03755, 1990.
Singer, H. J., Matheson, L., Grubb, R., Newman, A., and Bouwer, S. D.:
Monitoring space weather with the GOES magnetometers, Proc. SPIE Int. Soc.
Opt. Eng., 2812, 299–308, 1996.
Southwood, D. J. and Kivelson, M. G.: Charged particle behavior in
low-frequency geomagnetic pulsations: 1. Transverse waves, J. Geophys. Res.,
86, 5643–5655, https://doi.org/10.1029/JA086iA07p05643, 1981.
Southwood, D. J. and Kivelson, M. G.: The Magnetohydrodynamic Response of the
Magnetospheric Cavity to Changes in Solar Wind Pressure, J. Geophys. Res.,
95, 2301–2309, https://doi.org/10.1029/JA095iA03p02301, 1990.
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M.,
Bourdarie, S., Chan, A. H. S., Claudepierre, G., Clemmons, J. H., Cravens, J.
P., Elkington, S. R., Fennell, J. F., Friedel, R. H. W., Funsten, H. O.,
Goldstein, J., Green, J. C., Guthrie, A., Henderson, M. G , Horne, R. B.,
Hudson, M. K., Jahn, J.-M., Jordanova, V. K., Kanekal, S. G., Klatt, B. W.,
Larsen, B. A., Li, X., MacDonald, E. A., Mann, I. R., Niehof, J., O'Brien, T.
P., Onsager, T. G., Salvaggio, D., Skoug, R. M., Smith, S. S., Suther, L. L.,
Thomsen, M. F., and Thorne, R. M.: Science Goals and Overview of the
Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on
NASA's Radiation Belt Storm Probes (RBSP) Mission, Space Sci. Rev., 179,
311–336, https://doi.org/10.1007/s11214-013-0007-5 2013.
Takahashi, N., Kasaba, Y., Nishimura, Y., Shinbori, A., Kikuchi, T., Hori,
T., Ebihara, Y., and Nishitani, N.: Propagation and evolution of electric
fields associated with solar wind pressure pulses based on spacecraft and
ground-based observations, J. Geophys. Res.-Space Phys., 122, 8446–8461,
https://doi.org/10.1002/2017JA023990, 2017.
Tamao, T.: The structure of three-dimensional hydromagnetic waves in a
uniform cold plasma, J. Geomagn. Geoelectr., 48, 89–114,
https://doi.org/10.5636/jgg.16.89, 1964.
University of Helsinki: Database of Heliospheric Shock Waves, available at:
http://ipshocks.fi, last access: 1 September 2018.
Wang, C., Sun, T. R., Guo, X. C., and Richardson, J. D.: Case study of
nightside magnetospheric magnetic field response to interplanetary shocks, J.
Geophys. Res., 115, A10247, https://doi.org/10.1029/2010JA015451, 2010.
Wilken, W., Goertz, C. K., Baker, D. N., Higbie, P. R., and Fritz , T. A.:
The SSC on July 29, 1977 and its propagation within the magnetosphere, J.
Geophys. Res., 87, 5901–5910, https://doi.org/10.1029/JA087iA08p05901, 1982.
Wilken, W., Baker, D. N., Higbie, P. R., Fritz, T. A., Olson, W. P., and
Pfitzer, K. A.: Magnetospheric configuration and energetic particle effects
associated with a SSC: A case study of the CDAW event on March 22, 1979, J.
Geophys. Res., 91, 1459–1473, https://doi.org/10.1029/JA091iA02p01459, 1986.
Wygant, J. and Brenemean, A.: RBSP/EFW Home – University of Minnesota,
available at: http://www.space.umn.edu/rbspefw-data, last access: 1
September 2017.
Wygant, J., Mozer, F., Temerin, M., Blake, J., Maynard, N., Singer, H., and
Smiddy M.: Large amplitude electric field and magnetic field signatures in
the inner magnetosphere during injection of 15 MeV electron drift echoes,
Geophys. Res. Lett., 21, 1739–1742, https://doi.org/10.1029/94GL00375, 1994.
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale,
S. D., Ludlam, M., Turin, P., Harvey, P. R., Hochmann, R., Harps, K., Dalton,
G., McCauley, J., Rachelson, W., Gordon, D., Donakowski, B., Shultz, C.,
Smith, C., Diaz-Aguado, M., Fischer, J., Heavner, S., Berg, P., Malaspina, D.
M., Bolton, M. K., Hudson, M., Strangeway, R. J., Baker, D. N., Li, X.,
Albert, J., Foster, J. C., Chaston, C. C., Mann, I., Donovan, E., Cully, C.
M., Cattell, C. A., Krasnoselskikh, V., Kersten, K., Breneman, A., and Tao,
J. B.: The electric field and waves instruments on the radiation belt storm
probes mission, Space Sci. Rev., 179, 183–220,
https://doi.org/10.1007/s11214-013-0013-7, 2013.
Zong, Q.-G., Zhou, X.-Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz,
T. A., Daly, P. W., Dunlop, M., and Pedersen, A.: Energetic electron response
to ULF waved induced by interplanetary shocks in the outer radiation belt, J.
Geophys. Res., 114, A10204, https://doi.org/10.1029/2009JA014393, 2009.
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present...