Articles | Volume 36, issue 5
https://doi.org/10.5194/angeo-36-1285-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1285-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Beam tracking strategies for fast acquisition of solar wind velocity distribution functions with high energy and angular resolutions
Johan De Keyser
CORRESPONDING AUTHOR
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Brussels, Belgium
Benoit Lavraud
Institut de Recherche en Astrophysique et Planétologie (IRAP), Univ. Toulouse, CNRS, UPS, CNES, Toulouse, France
Lubomir Přech
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
Eddy Neefs
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Brussels, Belgium
Sophie Berkenbosch
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Brussels, Belgium
Bram Beeckman
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Brussels, Belgium
Andrei Fedorov
Institut de Recherche en Astrophysique et Planétologie (IRAP), Univ. Toulouse, CNRS, UPS, CNES, Toulouse, France
Maria Federica Marcucci
Istituto di Astrofisica e Planetologia Spaziali (INAF/IAPS), Rome, Italy
Rossana De Marco
Istituto di Astrofisica e Planetologia Spaziali (INAF/IAPS), Rome, Italy
Daniele Brienza
Istituto di Astrofisica e Planetologia Spaziali (INAF/IAPS), Rome, Italy
Related authors
Lukas Maes, Romain Maggiolo, and Johan De Keyser
Ann. Geophys., 34, 961–974, https://doi.org/10.5194/angeo-34-961-2016, https://doi.org/10.5194/angeo-34-961-2016, 2016
Short summary
Short summary
Ion outflow from the ionospheric regions at the highest latitudes is mainly driven by solar illumination. It is an important factor affecting atmospheric escape and space weather. But this region rotates into and out of the sunlight on a daily and seasonal basis. This creates daily and seasonal variations in the outflow, even with both hemispheres combined. The north–south asymmetry in Earth's magnetic field causes extra variations and asymmetries. This was studied with a simple empirical model.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
H. Gunell, G. Stenberg Wieser, M. Mella, R. Maggiolo, H. Nilsson, F. Darrouzet, M. Hamrin, T. Karlsson, N. Brenning, J. De Keyser, M. André, and I. Dandouras
Ann. Geophys., 32, 991–1009, https://doi.org/10.5194/angeo-32-991-2014, https://doi.org/10.5194/angeo-32-991-2014, 2014
David Sarria, Francois Lebrun, Pierre-Louis Blelly, Remi Chipaux, Philippe Laurent, Jean-Andre Sauvaud, Lubomir Prech, Pierre Devoto, Damien Pailot, Jean-Pierre Baronick, and Miles Lindsey-Clark
Geosci. Instrum. Method. Data Syst., 6, 239–256, https://doi.org/10.5194/gi-6-239-2017, https://doi.org/10.5194/gi-6-239-2017, 2017
Short summary
Short summary
The TARANIS spacecraft will be launched at the end of 2018. It is one of the first dedicated to the study of terrestrial gamma-ray flashes (TGF) and associated electrons (TEB), produced by thunderstorms. We present two of the six instruments on board the TARANIS spacecraft: a gamma-ray and energetic electron detector (XGRE) and an electron detector (IDEE). We compare them to other instruments that have already detected TGF and TEB, and use them to estimate the detection rate of TARANIS.
Lukas Maes, Romain Maggiolo, and Johan De Keyser
Ann. Geophys., 34, 961–974, https://doi.org/10.5194/angeo-34-961-2016, https://doi.org/10.5194/angeo-34-961-2016, 2016
Short summary
Short summary
Ion outflow from the ionospheric regions at the highest latitudes is mainly driven by solar illumination. It is an important factor affecting atmospheric escape and space weather. But this region rotates into and out of the sunlight on a daily and seasonal basis. This creates daily and seasonal variations in the outflow, even with both hemispheres combined. The north–south asymmetry in Earth's magnetic field causes extra variations and asymmetries. This was studied with a simple empirical model.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
H. Gunell, G. Stenberg Wieser, M. Mella, R. Maggiolo, H. Nilsson, F. Darrouzet, M. Hamrin, T. Karlsson, N. Brenning, J. De Keyser, M. André, and I. Dandouras
Ann. Geophys., 32, 991–1009, https://doi.org/10.5194/angeo-32-991-2014, https://doi.org/10.5194/angeo-32-991-2014, 2014
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Instruments and techniques
Estimating gradients of physical fields in space
Magnetometer in-flight offset accuracy for the BepiColombo spacecraft
Yufei Zhou and Chao Shen
Ann. Geophys., 42, 17–28, https://doi.org/10.5194/angeo-42-17-2024, https://doi.org/10.5194/angeo-42-17-2024, 2024
Short summary
Short summary
Multiple spacecraft can operate jointly to detect quantities that are unattainable with a single spacecraft. Present constellations typically consist of four spacecraft, and it is established that a planar distribution of the spacecraft should be avoided. This study addresses the configuration problem for future missions of more spacecraft to measure physical gradients of higher orders. As for quadratic gradients, spacecraft must not be on any quadric surface, such as a sphere or cylinder.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Cited articles
Bame, S. J., McComas, D. J., Barraclough, B. L., Phillips, J. L.,
Sofaly, K. J., Chavez, J. C., Goldstein, B. E., and Sakurai, R. K.:
The ULYSSES solar wind plasma experiment, Astron. Astrophys. Sup.,
92, 237–265, 1992. a
Bedington, R., Kataria, D., and Smith, A.: A miniaturised,
nested-cylindrical electrostatic analyser geometry for dual electron and ion,
multi-energy measurements, Nucl. Instrum. Meth. A, 793, 92–100,
https://doi.org/10.1016/j.nima.2015.04.067, 2015. a
Borovsky, J. E.: The effect of sudden wind shear on the Earth's
magnetosphere: Statistics of wind shear events and CCMC simulations of
magnetotail disconnections, J. Geophys. Res., 117, A06224,,
https://doi.org/10.1029/2012JA017623, 2012. a
Borovsky, J. E. and Steinberg, J. T.: No evidence for the localized heating
of
solar wind protons at intense velocity shear zones, J. Geophys. Res., 119,
1455–1462, https://doi.org/10.1002/2013JA019746, 2014. a
Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Laboratory, Living
Rev. Sol. Phys., 2, 4, https://doi.org/10.12942/lrsp-2005-4, 2005. a
Burlaga, L. F.: Large velocity discontinuities in the solar wind, Sol.
Phys.,
7, 72, https://doi.org/10.1007/BF00148407, 1969. a
Cara, A., Lavraud, B., Fedorov, A., De Keyser, J., DeMarco, R., Marcucci,
M. F., Valentini, F., Servidio, S., and Bruno, R.: Electrostatic analyzer
design for solar wind proton measurements with high temporal, energy, and
angular resolutions, J. Geophys. Res., 122, 1439–1450,
https://doi.org/10.1002/2016JA023269, 2017. a, b, c, d, e
Carlson, C. W., Curtis, D. W., Paschmann, G., and Michel, W.: An instrument
for rapidly measuring plasma distribution functions with high resolution,
Adv. Space Res., 2, 67–70, https://doi.org/10.1016/0273-1177(82)90151-X, 1982. a
Chané, E., Raeder, J., Saur, J., Neubauer, F. M., Maynard, K. M., and
Poedts, S.: Simulations of the Earth's magnetosphere embedded in
sub-Alfvénic solar wind on 24 and 25 May 2002, J. Geophys. Res., 120,
8517–8528, https://doi.org/10.1002/2015JA021515, 2015. a
Coleman Jr., P. J.: Turbulence, Viscosity, and Dissipation in the
Solar-Wind Plasma, Astrophys. J., 153, 371, https://doi.org/10.1086/149674, 1968. a
De Keyser, J.: Beam tracking strategies for fast acquisition of solar wind
velocity distribution functions with high energy and angular resolutions:
Supplementary Materials, Royal Belgian Institute for Space Aeronomy, https://doi.org/10.18758/71021039, 2018. a, b
De Keyser, J., Roth, M., and Söding, A.: Flow shear across solar wind
discontinuities: WIND observations, Geophys. Res. Lett., 25, 2649–2652,
https://doi.org/10.1029/98GL51938, 1998. a
Donoho, D.: Compressed sensing, IEEE T. Inform. Theory, 52,
1289–1306, https://doi.org/10.1109/TIT.2006.871582, 2006. a
Donoho, D., Elad, M., and Temlyakov, V.: Stable recovery of sparse
overcomplete
representations in the presence of noise, IEEE T. Inform.
Theory, 52, 6–18, https://doi.org/10.1109/TIT.2005.860430, 2006. a
Dryer, M.: Interplanetary Studies: Propagation of Disturbances Between the
Sun and the Magnetosphere, Space Sci. Rev., 67, 363–419,
https://doi.org/10.1007/BF00756075, 1994. a
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction: The Cluster mission, Ann. Geophys., 19, 1197–1200,
https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Fairfield, D. H.: Average and unusual locations of the Earth's magnetopause
and
bow shock, J. Geophys. Res., 76, 6700–6716, https://doi.org/10.1029/JA076i028p06700,
1971. a
Gosling, J. T., Asbridge, J. R., Bame, S. J., Hundhausen, A. J., and Strong,
I. B.: Satellite observations of interplanetary shock waves, J. Geophys.
Res., 73, 43–50, https://doi.org/10.1029/JA073i001p00043, 1968. a
Gosling, J. T., Hansen, R. T., and Bame, S. J.: Solar wind speed
distributions: 1962–1970, J. Geophys. Res., 76, 1811–1815,
https://doi.org/10.1029/JA076i007p01811, 1971. a
Kiyani, K. H., Osman, K. T., and Chapman, S. C.: Dissipation and heating in
solar wind turbulence: from the macro to the micro and back again, Philos.
T. R. Soc. A, 373, 20140155, https://doi.org/10.1098/rsta.2014.0155, 2015. a
Krasnoselskikh, V., Balikhin, M., Walker, S. N., Schwartz, S., Sundkvist, D.,
Lobzin, V., Gedalin, M., Bale, S. D., Mozer, F., Soucek, J., Hobara, Y., and
Comisel, H.: The Dynamic Quasiperpendicular Shock: Cluster Discoveries, Space
Sci. Rev., 178, 535–598, https://doi.org/10.1007/s11214-013-9972-y, 2013. a
Lin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D., Ergun, R.,
Larson, D., McFadden, J., McCarthy, M., Parks, G. K., Rème, H., Bosqued,
J. M., Coutelier, J., Cotin, F., D'Uston, C., Wenzel, K. P., Sanderson,
T. R., Henrion, J., Ronnet, J. C., and Paschmann, G.: A three-dimensional
plasma and energetic particle investigation for the wind spacecraft, Space
Sci. Rev., 71, 125–153, https://doi.org/10.1007/BF00751328, 1995. a
Malaspina, D. M., Newman, D. L., Wilson, L. B., Goetz, K., Kellogg, P. J.,
and
Kerstin, K.: Electrostatic Solitary Waves in the Solar Wind: Evidence for
Instability at Solar Wind Current Sheets, J. Geophys. Res.-Space, 118, 591–599, https://doi.org/10.1002/jgra.50102, 2013. a
Marsch, E.: Kinetic Physics of the Solar Corona and Solar Wind, Living Rev.
Sol. Phys., 3, 1, https://doi.org/10.12942/lrsp-2006-1, 2006. a
Marsch, E.: Helios: Evolution of Distribution Functions 0.3–1 AU, Space
Sci.
Rev., 172, 23–39, https://doi.org/10.1007/s11214-010-9734-z, 2012. a, b, c
Marsch, E., Mühlhäuser, K.-H., Schwenn, R., Rosenbauer, H., Pilipp,
W.,
and Neubauer, F. M.: Solar wind protons: Three-dimensional velocity
distributions and derived plasma parameters measured between 0.3 and 1 AU,
J. Geophys. Res.-Space, 87, 52–72,
https://doi.org/10.1029/JA087iA01p00052, 1982. a
Marsch, E., Zhao, L., and Tu, C.-Y.: Limits on the core temperature
anisotropy of solar wind protons, Ann. Geophys., 24, 2057–2063,
https://doi.org/10.5194/angeo-24-2057-2006, 2006. a, b
Marsch, E., Yao, S., and Tu, C.-Y.: Proton beam velocity distributions in an
interplanetary coronal mass ejection, Ann. Geophys., 27, 869–875,
https://doi.org/10.5194/angeo-27-869-2009, 2009. a
Marsden, R. G. and Müller, D.: Solar Orbiter definition study report,
Tech.
rep., ESA/SRE(2011)14, European Space Agency, Paris, 2011. a
Matteini, L., Hellinger, P., Goldstein, B. E., Landi, S., Velli, M., and
Neugebauer, M.: Signatures of kinetic instabilities in the solar wind,
J. Geophys. Res.-Space, 118, 2771–2782,
https://doi.org/10.1002/jgra.50320, 2013. a
Mazelle, C., Lembège, B., Morgenthaler, A., Meziane, K., Horbury, T. S.,
Génot, V., Lucek, E. A., and Dandouras, I.: Self-Reformation of the
Quasi-Perpendicular Shock: CLUSTER Observations, AIP Conf. Proc.,
1216, 471–474, https://doi.org/10.1063/1.3395905, 2010. a
McComas, D. J., Barraclough, B. L., Funsten, H. O., Gosling, J. T.,
Santiago-Munoz, E., Skoug, R. M., Goldstein, B. E., Neugebauer, M., Riley,
P., and Balogh, A.: Solar wind observations over Ulysses' first full polar
orbit, J. Geophys. Res., 105, 10419–10433, https://doi.org/10.1029/1999JA000383,
2000. a
McComas, D. J., Elliott, H. A., Gosling, J. T., Reisenfeld, D. B., Skoug,
R. M., Goldstein, B. E., Neugebauer, M., and Balogh, A.: Ulysses' second
fast-latitude scan: Complexity near solar maximum and the reformation of
polar coronal holes, Geophys. Res. Lett., 29, 1290,
https://doi.org/10.1029/2001GL014164, 2002. a
Morel, X., Berthomier, M., and Berthelier, J.-J.: Electrostatic analyzer with
a 3-D instantaneous field of view for fast measurements of plasma
distribution functions in space, J. Geophys. Res., 122, 3397–3410,
https://doi.org/10.1002/2016JA023596, 2017. a
Müller, D., Marsden, R. G., St. Cyr, O. C., Gilbert, H. R., and The
Solar Orbiter Team: Solar Orbiter: Exploring the Sun–Heliosphere
Connection, Solar Phys., 285, 25–70, https://doi.org/10.1007/s11207-012-0085-7, 2013. a
Osmane, A., Hamza, A. M., and Meziane, K.: On the generation of proton beams
in fast solar wind in the presence of obliquely propagating Alfven waves, J.
Geophys. Res., 115, A05101, https://doi.org/10.1029/2009JA014655, 2010. a
Pfau-Kempf, Y., Battarbee, M., Ganse, U., Hoilijoki, S., Turc, L., von
Alfthan, S., Vainio, R., and Palmroth, M.: On the Importance of Spatial and
Velocity Resolution in the Hybrid-Vlasov Modeling of Collisionless Shocks,
Front. Phys., 6, 44, https://doi.org/10.3389/fphy.2018.00044, 2018. a
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto,
T., Avanov, L., Barrie, A., Coffey, V., Dorelli, J., Gershman, D., Giles, B.,
Rosnack, T., Salo, C., Yokota, S., Adrian, M., Aoustin, C., Auletti, C.,
Aung, S., Bigio, V., Cao, N., Chandler, M., Chornay, D., Christian, K.,
Clark, G., Collinson, G., Corris, T., De Los Santos, A., Devlin, R., Diaz,
T., Dickerson, T., Dickson, C., Diekmann, A., Diggs, F., Duncan, C.,
Figueroa-Vinas, A., Firman, C., Freeman, M., Galassi, N., Garcia, K.,
Goodhart, G., Guererro, D., Hageman, J., Hanley, J., Hemminger, E., Holland,
M., Hutchins, M., James, T., Jones, W., Kreisler, S., Kujawski, J., Lavu, V.,
Lobell, J., LeCompte, E., Lukemire, A., MacDonald, E., Mariano, A., Mukai,
T., Narayanan, K., Nguyan, Q., Onizuka, M., Paterson, W., Persyn, S.,
Piepgrass, B., Cheney, F., Rager, A., Raghuram, T., Ramil, A., Reichenthal,
L., Rodriguez, H., Rouzaud, J., Rucker, A., Saito, Y., Samara, M., Sauvaud,
J.-A., Schuster, D., Shappirio, M., Shelton, K., Sher, D., Smith, D., Smith,
K., Smith, S., Steinfeld, D., Szymkiewicz, R., Tanimoto, K., Taylor, J.,
Tucker, C., Tull, K., Uhl, A., Vloet, J., Walpole, P., Weidner, S., White,
D., Winkert, G., Yeh, P.-S., and Zeuch, M.: Fast Plasma Investigation for
Magnetospheric Multiscale, Space Sci. Rev., 199, 331–406,
https://doi.org/10.1007/s11214-016-0245-4, 2016. a
Porsche, H.: HELIOS mission: Mission objectives, mission verification,
selected results, in: The Solar System and its Exploration (SEE N82-26087
16-88), Proc. Alpbach Summer School, 43–50, 1981. a
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B.,
Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros,
A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E.,
Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey,
C., Mazelle, C., d'Uston, C., Möbius, E., Kistler, L. M., Crocker, K.,
Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt,
D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N.,
Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P.,
McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E.,
Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis,
A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B.,
Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L.,
Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G.,
Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B.,
Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup,
B.: First multispacecraft ion measurements in and near the Earth's
magnetosphere with the identical Cluster ion spectrometry (CIS) experiment,
Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001,
2001. a, b
Riazantseva, M. O., Budaev, V. P., Zelenyi, L. M., Zastenker, G. N., Pavlos,
G. P., Šafránková, J., Němeček, Z., Přech,
L., and Nemec, F.: Dynamic properties of small-scale solar wind plasma
fluctuations, Philos. T. R. Soc. A, 373, 20140146,
https://doi.org/10.1098/rsta.2014.0146, 2015. a
Šafránková, J., Němeček, Z., Přech, L.,
Koval,
A., Cermak, I., Beranek, M., Zastenker, G., Shevyrev, N., and Chesalin, L.: A
new approach to solar wind monitoring, Adv. Space Res., 41, 153–159,
https://doi.org/10.1016/j.asr.2007.08.034, 2008. a
Šafránková, J., Němeček, Z., Přech, L.,
Zastenker, G., Cermak, I., Chesalin, L., Komarek, A., Vaverka, J., Beranek,
M., Pavlu, J., Gavrilova, E., Karimov, B., and Leibov, A.: Fast Solar Wind
Monitor (BMSW): Description and First Results, Space Sci. Rev., 175,
165–182, https://doi.org/10.1007/s11214-013-9979-4, 2013. a, b, c
Skoug, R. M., Funsten, H. O., Möbius, E., Harper, R. W., Kihara, K. H.,
and
Bower, J. S.: A wide field of view plasma spectrometer, J. Geophys. Res.,
121, 6590–6601, https://doi.org/10.1002/2016JA022581, 2016. a
Tu, C.-Y. and Marsch, E.: MHD Structures, Waves and Turbulence in the Solar
Wind: Observations and Theories, Space Sci. Rev., 73, 1–210,
https://doi.org/10.1007/BF00748891, 1995. a
Vaisberg, O., Zastenker, G., Smirnov, V., Němeček, Z.,
Šafránková, J., Avanov, L., and Kolesnikova, B.: Ion
distribution function dynamics near the strong shock front (Project
INTERSHOCK), Adv. Space Res., 6, 41–44, https://doi.org/10.1016/0273-1177(86)90007-4,
1986.
a
Vaivads, A., Retinò, A., Soucek, J., Khotyaintsev, Y. V., Valentini, F.,
Escoubet, C. P., Alexandrova, O., André, M., Bale, S. D., Balikhin, M.,
Burgess, D., Camporeale, E., Caprioli, D., Chen, C. H. K., Clacey, E., Cully,
C. M., De Keyser, J., Eastwood, J. P., Fazakerley, A. N., Eriksson, S.,
Goldstein, M. L., Graham, D. B., Haaland, S., Hoshino, M., Ji, H.,
Karimabadi, H., Kucharek, H., Lavraud, B., Marcucci, F., Matthaeus, W. H.,
Moore, T. E., Nakamura, R., Narita, Y., Němeček, Z., Norgren, C.,
Opgenoorth, H., Palmroth, M., Perrone, D., Pinçon, J.-L., Rathsman, P.,
Rothkaehl, H., Sahraoui, F., Servidio, S., Sorriso-Valvo, L., Vainio, R.,
Vörös, Z., and Wimmer-Schweingruber, R. F.: Turbulence Heating
ObserveR – satellite mission proposal, J. Plasma Phys., 82, 905820501,
https://doi.org/10.1017/S0022377816000775, 2016. a
Valentini, F., Perrone, D., Stabile, S., Pezzi, O., Servidio, S., De Marco,
R.,
Marcucci, F., Bruno, R., Lavraud, B., De Keyser, J., Consolini, G., Brienza,
D., Sorriso-Valvo, L., Retinò, A., Vaivads, A., Salatti, M., and Veltri,
P.: Differential kinetic dynamics and heating of ions in the turbulent solar
wind, New J. Phys., 18, 125001,
https://doi.org/10.1088/1367-2630/18/12/125001, 2016. a
Voitenko, Y. and Pierrard, V.: Velocity-Space Proton Diffusion in the Solar
Wind Turbulence, Sol.Phys., 288, 369–387,
https://doi.org/10.1007/s11207-013-0296-6, 2013. a
Volkmer, P. M. and Neubauer, F. M.: Statistical properties of fast
magnetoacoustic shock waves in the solar wind between 0.3 AU and 1 AU:
Helios-l, 2 observations, Ann. Geophys., 3, 1–12, 1985. a
Watari, S. and Detman, T.: In situ local shock speed and transit shock speed,
Ann. Geophys., 16, 370–375, https://doi.org/10.1007/s00585-998-0370-9, 1998. a
Wilson III, L. B., Stevens, M. L., Kasper, J. C., Klein, K. G., Maruca,
B. A., Bale, S. D., Bowen, T. A., Pulupa, M. P., and Salem, C. S.: The
Statistical Properties of Solar Wind Temperature Parameters Near 1 au,
Astrophys. J. Suppl. S., 236, 41,
https://doi.org/10.3847/1538-4365/aab71c, 2018. a
Wu, C. C., Feng, X. S., Wu, S. T., Dryer, M., and Fry, C. D.: Effects of the
interaction and evolution of interplanetary shocks on background solar wind
speeds, J. Geophys. Res., 111, A12104, https://doi.org/10.1029/2006JA011615, 2016. a
Zastenker, G. N., Vaisberg, O. L., Němeček, Z.,
Šafránková, J., Smirnov, V. N., Skalskii, A. A., Borodkova,
N. L., Yermolaev, Y. I., and Kozák, I.: Solar wind protons, alpha
particles and electrons in the shock wave and the potential barrier (The
intershock project), Czech. J. Phys. Sect. B, 39, 569–576,
https://doi.org/10.1007/BF01597721, 1989. a
Short summary
This paper describes "beam tracking", a new technology for measuring velocity distributions in the solar wind with a plasma spectrometer, that allows the order of magnitude speedup in data acquisition needed for studying ion-scale turbulence. The basic idea is that the spectrometer should only sample the energy–elevation–azimuth range where the solar wind is expected to reside. The paper shows how the technique can be implemented and illustrates its performance and robustness through simulation.
This paper describes "beam tracking", a new technology for measuring velocity distributions in...