Articles | Volume 36, issue 4
https://doi.org/10.5194/angeo-36-1153-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1153-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sporadic auroras near the geomagnetic equator: in the Philippines, on 27 October 1856
Hisashi Hayakawa
CORRESPONDING AUTHOR
Graduate School of Letters, Osaka University, Toyonaka, 5600043, Japan
Science and Technology Facilities Council, RAL Space, Rutherford
Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
José M. Vaquero
Departamento de Física, Universidad de Extremadura, 06800
Mérida, Spain
Yusuke Ebihara
Research Institute for Sustainable Humanosphere, Kyoto University,
Uji, 6100011, Japan
Unit of Synergetic Studies for Space, Kyoto University, Kyoto,
6068306, Japan
Related authors
Yuta Uchikawa, Les Cowley, Hisashi Hayakawa, David M. Willis, and F. Richard Stephenson
Hist. Geo Space. Sci., 11, 81–92, https://doi.org/10.5194/hgss-11-81-2020, https://doi.org/10.5194/hgss-11-81-2020, 2020
Short summary
Short summary
A graphical record of a cruciform appearance in the night sky and possible lunar-halo display of 806 CE in the Anglo-Saxon Chronicle is philologically traced back to mid-ninth-century continental manuscripts, and a probable observational site is identified as around Sens in France. Possible lunar halos are examined by numerical ray tracing. Cruciform halos are shown to be faint and rare and thus notable. Halos from physically credible cloud ice crystals reproduce the manuscript renditions.
Maite deCastro, Jose González-Cao, Nicolás deCastro, Juan J. Taboada, Jose M. Vaquero, and Moncho Gómez-Gesteira
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-49, https://doi.org/10.5194/cp-2024-49, 2024
Preprint under review for CP
Short summary
Short summary
Torrential rains in the Eastern Atlantic during 1768–1769 caused the worst agricultural crisis in Galicia and Northern Portugal. Using the EKF400v2 paleo-reanalysis dataset, it was found that the rainfall anomaly was positive in 11 out of 12 months. June 1768 saw the highest positive rain anomaly of the century, and September 1768 the second-highest. The atmospheric synoptic patterns show negative anomalies in sea level pressure and 500 hPa. These patterns induce surface low-pressure systems.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
EGUsphere, https://doi.org/10.5194/egusphere-2023-2522, https://doi.org/10.5194/egusphere-2023-2522, 2023
Short summary
Short summary
The month of June 1925 was detected as exceptional in the SW interior of Iberia due to the large number of thunderstorms and the significant impacts that caused, with serious losses in human lives and material resources. We analyzed this event from different, complementary perspectives: the reconstruction of the history of the events from newspapers; the study of monthly meteorological variables of the longest series available in Iberia; and the analysis of the meteorological synoptic situation.
Nieves Bravo-Paredes, María Cruz Gallego, Ricardo M. Trigo, and José Manuel Vaquero
Clim. Past, 19, 1397–1408, https://doi.org/10.5194/cp-19-1397-2023, https://doi.org/10.5194/cp-19-1397-2023, 2023
Short summary
Short summary
We present the earliest records made in San Fernando, very close to Cádiz (SW Spain). Several previous works have already recovered a significant number of meteorological records of interest in these localities. However, more than 40 000 daily meteorological observations recorded at the Royal Observatory of the Spanish Navy (located in San Fernando) were previously unnoticed and remained neither digitized nor studied. We analyze in detail these newly recovered meteorological readings.
Audrey Schillings, Herbert Gunell, Hans Nilsson, Alexandre De Spiegeleer, Yusuke Ebihara, Lars G. Westerberg, Masatoshi Yamauchi, and Rikard Slapak
Ann. Geophys., 38, 645–656, https://doi.org/10.5194/angeo-38-645-2020, https://doi.org/10.5194/angeo-38-645-2020, 2020
Short summary
Short summary
The Earth's atmosphere is constantly losing molecules and charged particles, amongst them oxygen ions or O+. Quantifying this loss provides information about the evolution of the atmosphere on geological timescales. In this study, we investigate the final destination of O+ observed with Cluster satellites in a high-altitude magnetospheric region (plasma mantle) by tracing the particles forward in time using simulations. We find that approximately 98 % of O+ escapes the Earth's magnetosphere.
Yuta Uchikawa, Les Cowley, Hisashi Hayakawa, David M. Willis, and F. Richard Stephenson
Hist. Geo Space. Sci., 11, 81–92, https://doi.org/10.5194/hgss-11-81-2020, https://doi.org/10.5194/hgss-11-81-2020, 2020
Short summary
Short summary
A graphical record of a cruciform appearance in the night sky and possible lunar-halo display of 806 CE in the Anglo-Saxon Chronicle is philologically traced back to mid-ninth-century continental manuscripts, and a probable observational site is identified as around Sens in France. Possible lunar halos are examined by numerical ray tracing. Cruciform halos are shown to be faint and rare and thus notable. Halos from physically credible cloud ice crystals reproduce the manuscript renditions.
Víctor M. S. Carrasco, Enric Aragonès, Jorge Ordaz, and José M. Vaquero
Hist. Geo Space. Sci., 9, 133–139, https://doi.org/10.5194/hgss-9-133-2018, https://doi.org/10.5194/hgss-9-133-2018, 2018
Short summary
Short summary
An analysis is made of the records made by Spanish observers of a notable aurora on 18 January 1770 in order to study the characteristics of this event. The records indicate that the phenomenon was observed in both continental and insular territories of Spain. In general, observers described the aurora as red in colour, from sunset to midnight. Calculations of the geomagnetic latitudes of the observation locations indicate this aurora was observed over a wide range of abnormally low latitudes.
José M. Vaquero
Hist. Geo Space. Sci., 8, 53–56, https://doi.org/10.5194/hgss-8-53-2017, https://doi.org/10.5194/hgss-8-53-2017, 2017
Short summary
Short summary
An analysis is given of the account of a
globe of fireobserved in Zafra (Spain) in the middle of the 16th century. During a strong storm, Conde Don Pedro observed what he described as a
globe of firethat was directed against the city and abruptly changed course. He attributed the change in course to a miracle. He described neither any damage nor sound.
S. Pereira, A. M. Ramos, J. L. Zêzere, R. M. Trigo, and J. M. Vaquero
Nat. Hazards Earth Syst. Sci., 16, 371–390, https://doi.org/10.5194/nhess-16-371-2016, https://doi.org/10.5194/nhess-16-371-2016, 2016
Short summary
Short summary
This work explores the meteorological conditions of the hydro-geomorphologic event of December 1909 that triggered the highest floods in more than 100 years at the Douro river's mouth and caused important social impacts over the Portuguese and Spanish territories.
The study of this extreme event contributes to a comprehensive and systematic synoptic evaluation of the second most deadly hydro-geomorphologic disaster event occurred in Portugal since 1865.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Airglow
Terrestrial exospheric dayside H-density profile at 3–15 RE from UVIS/HDAC and TWINS Lyman-α data combined
Semi-annual variation of excited hydroxyl emission at mid-latitudes
Jochen H. Zoennchen, Hyunju K. Connor, Jaewoong Jung, Uwe Nass, and Hans J. Fahr
Ann. Geophys., 40, 271–279, https://doi.org/10.5194/angeo-40-271-2022, https://doi.org/10.5194/angeo-40-271-2022, 2022
Short summary
Short summary
Exospheric Ly-α observations of UVIS/HDAC at CASSINI on its Earth swing-by and TWINS are combined to derive the exospheric H-density profile of the ecliptic dayside between 3–15 RE. At 10 RE nH=35 cm−3 is found in the vicinity of the subsolar point for quiet space weather conditions. Also a faster radial fall of the dayside H density above 8 RE (r−3) compared to lower distances of 3–7 RE (r−2.37) is found and possibly indicates enhanced loss of H atoms near the magnetopause and beyond.
Mykhaylo Grygalashvyly, Alexander I. Pogoreltsev, Alexey B. Andreyev, Sergei P. Smyshlyaev, and Gerd R. Sonnemann
Ann. Geophys., 39, 255–265, https://doi.org/10.5194/angeo-39-255-2021, https://doi.org/10.5194/angeo-39-255-2021, 2021
Short summary
Short summary
Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl emissions at mid-latitudes compared to those at low latitudes. This differs from the annual cycle at high latitudes. We found that this shift in the semi-annual cycle is determined mainly by the superposition of annual variations of T and O concentration. The winter peak for emission is determined exclusively by atomic oxygen concentration, whereas the summer peak is the superposition of all impacts.
Cited articles
Abbe, C.: An aurora in South Carolina and Kentucky, Mon. Weather Rev., 23, 297–298, 1895.
Allen, J., Frank, L., Sauer, H., and Reiff, P.: Effects of the March 1989
solar activity, EOS, 70, 1486–1488, https://doi.org/10.1029/89EO00409,
1989.
Anderson, B. J. and Hamilton, D. C.: Electromagnetic ion cyclotron waves
stimulated by modest magnetospheric compressions, J. Geophys. Res., 98, 11369–11382,
https://doi.org/10.1029/93JA00605, 1993.
Araki, T.: A Physical Model of the Geomagnetic Sudden Commencement, in:
Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, edited by: Engebretson, M. J., Takahashi, K. and Scholer, M., American Geophysical
Union, Washington, DC, USA, https://doi.org/10.1029/GM081p0183, 1994.
Araki, T., Takeuchi, T., and Araki, Y.: Rise time of geomagnetic sudden
commencements – Statistical analysis of ground geomagnetic data, Earth
Planet. Space, 56, 289–293, https://doi.org/10.1186/BF03353411, 2004.
Batlloì, J.: Cataòlogo inventario de magnetoìmetros españoles, Centro Nacional de Informacion Geograìfica, Madrid, Spain, 2005.
Botley, C. M.: Sporadic aurora, Planet. Space Sci., 11, 723–724, 1963.
Carrasco, V. M. S., Trigo, R., and Vaquero, J. M.: Unusual rainbows as auroral
candidates: Another point of view, P. Astron. Soc. Jpn., 69, L1, https://doi.org/10.1093/pasj/psw127, 2017.
Carrington, R. C.: Observations of the spots on the sun from November 9, 1853, to March 24, 1861, made at Redhill, William & Norgate, London, UK, 1863.
Clette, F., Svalgaard, L., Vaquero, J. M., and Cliver, E. W.: Revisiting the
Sunspot Number. A 400-Year Perspective on the Solar Cycle, Space Sci. Rev., 186,
35–103, https://doi.org/10.1007/s11214-014-0074-2, 2014.
Cliver, E. W. and Dietrich, W. F.: The 1859 space weather event revisited: limits
of extreme activity, J. Space Weather Spac., 3, A31, https://doi.org/10.1051/swsc/2013053, 2013.
Cliver, E. W. and Svalgaard, L.: The 1859 Solar-Terrestrial Disturbance And the
Current Limits of Extreme Space Weather Activity, Sol. Phys., 224, 407–422, https://doi.org/10.1007/s11207-005-4980-z, 2004.
Denton, M. H., Borovsky, J. E., Skoug, R. M., Thomsen, M. F., Lavraud, B.,
Henderson, M. G., McPherron, R. L., Zhang, J. C., and Liemohn, M. W.:
Geomagnetic storms driven by ICME- and CIR-dominated solar wind, J. Geophys.
Res., 111, A07S07, https://doi.org/10.1029/2005JA011436, 2006.
Ebihara, Y. and Ejiri, M.: Numerical simulation of the ring current, Space Sci. Rev.,
105, 377–452, 2003.
Ebihara, Y., Hayakawa, H., Iwahashi, K., Tamazawa, H., Kawamura, A. D., and
Isobe, H.: Possible cause of extremely bright aurora witnessed in East
Asia on 17 September 1770, Space Weather, 15, 1373–1382,
https://doi.org/10.1002/2017SW001693, 2017.
Farrona, A. M., Gallego, M. C., Vaquero, J. M., and Domínguez-Castro,
F.: Spanish Eyewitness Accounts of the Great Space Weather Event of 1859,
Acta Geod. Geophys. Hu., 46, 370–377, https://doi.org/10.1556/AGeod.46.2011.3.7, 2011.
Fu, H. S., Cao, J. B., Mozer, F. S., Lu, H. Y., and Yang, B.: Chorus
intensification in response to interplanetary shock, J. Geophys. Res., 117, A01203, https://doi.org/10.1029/2011JA016913, 2012.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G.,
Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99,
5771–5792, https://doi.org/10.1029/93JA02867, 1994.
Green, J. and Boardsen, S.: Duration and extent of the great auroral storm of
1859, Adv. Space Res., 38, 130–135, https://doi.org/10.1016/j.asr.2005.08.054, 2006.
GSFC/SPDF: OMNI data, available at: https://omniweb.gsfc.nasa.gov, last
access: 20 August 2018.
Hayakawa, H., Tamazawa, H., Kawamura, A. D., and Isobe, H.: Records of sunspot
and aurora during CE 960–1279 in the Chinese chronicle of the Sòng
dynasty, Earth. Planet. Space, 67, 82, https://doi.org/10.1186/s40623-015-0250-y, 2015.
Hayakawa, H., Isobe, H., Kawamura, A. D., Tamazawa, H., Miyahara, H., and Kataoka, R.: Unusual rainbow and white rainbow: A new auroral
candidate in oriental historical sources, Publ. Astron. Soc. Jpn., 68, 33,
https://doi.org/10.1093/pasj/psw032, 2016a.
Hayakawa, H., Iwahashi, K., Tamazawa, H., Isobe, H., Kataoka, R., Ebihara,
Y., Miyahara, H., Kawamura, A. D., and Shibata, K.: East Asian observations
of low latitude aurora during the Carrington magnetic storm, Publ. Astron.
Soc. Jpn., 68, 99, https://doi.org/10.1093/pasj/psw097, 2016b.
Hayakawa, H., Iwahashi, K., Ebihara, Y., Tamazawa, H., Shibata, K., Knipp, D.
J., Kawamura, A. D., Hattori, K., Mase, K., Nakanishi, I., and Isobe, H.:
Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical
Documents, Astrophys. J. Lett., 850, L31, https://doi.org/10.3847/2041-8213/aa9661,
2017.
Hayakawa, H., Ebihara, Y., Vaquero, J. M., Hattori, K., Carrasco, V. M. S.,
Gallego, M. C., Hayakawa, S., Watanabe, Y., Iwahashi, K., Tamazawa, H.,
Kawamura, A. D., and Isobe, H.: A great space weather event in February 1730,
Astron. Astrophys., https://doi.org/10.1051/0004-6361/201832735, 2018a.
Hayakawa, H., Ebihara, Y., Willis, D. M., Hattori, K., Giunta, A. S., Wild,
M. N., Hayakawa, S., Toriumi, S., Mitsuma, Y., Macdonald, L. T., Shibata, K.,
and Silverman, S. M.: The Great Space Weather Event during February 1872
Recorded in East Asia, Astrophys. J., 862, 15,
https://doi.org/10.3847/1538-4357/aaca40, 2018b.
Immel, T. J., Mende, S. B., Frey, H. U., Patel, J., Bonnel, H. W.,
Engebretson, M. J., and Fuselier, S. A.: ULF waves associated with enhanced sub-auroral proton precipitation, Geophys. Monogr. Ser., 159,
71, 2005.
Jackson, A., Jonkers, A. R. T., and Walker, M.: Four centuries of geomagnetic
secular variation from historical records, Philos. T. R. Soc. A, 358, 957, 2000.
Kawamura, A. D., Hayakawa, H., Tamazawa, H., Miyahara, H., and Isobe, H.:
Aurora candidates from the chronicle of Qíng dynasty in several degrees of
relevance, Publ. Astron. Soc. Jpn,, 68, 79, https://doi.org/10.1093/pasj/psw074,
2016.
Kilpua, E. K. J., Olspert, N., Grigorievskiy, A., Käpylä, M. J.,
Tanskanen, E. I., Miyahara, H., Kataoka, R., Pelt, J., and Liu, Y. D.:
Statistical Study of Strong and Extreme Geomagnetic Disturbances and Solar
Cycle Characteristics, Astrophys. J., 806, 272,
https://doi.org/10.1088/0004-637X/806/2/272, 2015.
Kimball, D. S.: A study of the aurora of 1859. Scientific Report No. 6, University of Alaska, No. 6, 1960.
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J.
Geophys. Res., 110, A02209, 10.1029/2004JA010649, 2005.
Kronk, G. W.: Cometography: A Catalog of Comets, III, Cambridge University Press, Cambridge, UK, 2003.
Kronk, G. W.: Meteor Showers, an Annotated Catalog, Springer, New York, USA, 2014.
Lakhina, G. S. and Tsurutani, B. T.: Geomagnetic storms: historical perspective
to modern view, Geosci. Lett., 3, 5, https://doi.org/10.1186/s40562-016-0037-4, 2016.
Llanos, A.: Observación de una aurora boreal en Manila, Revista de los
Progresos de las Ciencias Exactas, Físicas y Naturales, 7, 223–225, 1857.
McIlwain, C. E.: Magnetic coordinates, Space Sci. Rev., 5, 585–598, 1966.
Meeus, J.: Astronomical algorithms, 2nd ed., Richmond, Willmann-Bell, VA,
USA, 1998.
Minnaert, M. G. J.: Light and Color in the Outdoors, Springer, New York, USA, 1993.
Nevanlinna, H.: Gauss' H-Variometer at the Helsinki Magnetic Observatory
(1844–1912), J. Geomagn. Geoelectr., 49, 1209–1216, https://doi.org/10.5636/jgg.49.1209, 1997.
Nevanlinna, H.: Results of the Helsinki magnetic observatory 1844-1912, Ann.
Geophys., 22, 1691–1704, https://doi.org/10.5194/angeo-22-1691-2004, 2004.
Nevanlinna, H.: A study on the great geomagnetic storm of 1859: Comparisons
with other storms in the 19th century, Adv. Space Res., 38, 180–187, 2006.
Nevanlinna, H. and Kataja, E.: An extension of the geomagnetic activity index
series aa for two solar cycles (1844–1868), Geophys. Res. Lett., 20, 2703–2706, 1993.
Nishida, A. and Jacobs, J. A.: World-wide changes in the geomagnetic field,
J. Geophys. Res., 67, 525–540, https://doi.org/10.1029/JZ067i002p00525, 1962.
Odenwald, S.: Newspaper reporting of space weather: End of a golden age,
Adv. Space Res., 5, S11005, https://doi.org/10.1029/2007SW000344, 2007.
Odenwald, S.: Solar Storms: 2000 years of human calamity! Createspace Independent Publishing Platform, San
Bernardino, CA, USA, 2015.
Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S., and Wood, T. G.:
Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, https://doi.org/10.1038/416152a, 2002.
Purkinje, J. E.: Neue Beiträge zur Kenntniss des Sehens in
Subjectiver Hinsicht (Berlin: Reimer), 1825.
Ribeiro, P., Vaquero, J. M., and Trigo, R.: Geomagnetic records of Carrington's
storm from Guatemala, J. Atmos. Sol.-Terr. Phy., 73, 308–315, 2011.
Selvakumaran, R., Veenadhari, B., Ebihara, Y., Kumar, S., and Prasad, D. S.: The
role of interplanetary shock orientation on SC/SI rise time and
geoeffectiveness, Adv. Space Res., 59, 1425–1434, https://doi.org/10.1016/j.asr.2016.12.010, 2017.
Shinbori, A., Ono, T., Izima, M., Kumamoto, A., and Oya, H.: Sudden
commencements related plasma waves observed by the Akebono satellite in the
polar region and inside the plasmasphere region, J. Geophys. Res., 108, 1457, https://doi.org/10.1029/2003JA009964, 2003.
Shinbori, A., Ono, T., Iizima, M., and Kumamoto, A.: SC related electric and magnetic
field phenomena observed by the Akebono satellite inside the plasmasphere,
Earth Planet. Space., 56, 269, https://doi.org/10.1186/BF03353409, 2014.
Shiokawa, K., Meng, C.-I., Reeves, G. D., Rich, F. J., and Yumoto, K.: A
multievent study of broadband electrons observed by the DMSP satellites and
their relation to red aurora observed at midlatitude stations, J. Geophys. Res., 102,
14237–14253, https://doi.org/10.1029/97JA00741, 1998.
Shiokawa, K., Ogawa, T., and Kamide, Y.: Low-latitude auroras observed in Japan:
1999–2004, J. Geophys. Res., 110, A05202, https://doi.org/10.1029/2004JA010706, 2005.
Silverman, S. M.: Low latitude auroras: the storm of 25 September 1909,
J. Atmos. Terr. Phys., 57, 673–685, 1995.
Silverman, S. M.: Sporadic auroras, J. Geophys. Res., 108, A4, https://doi.org/10.1029/2002JA009335, 2003.
Silverman, S. M.: Comparison of the aurora of September 1/2, 1859 with other
great auroras, Adv. Space Res., 38, 136–144, 2006.
Silverman, S. M.: Low-latitude auroras: The great aurora of 4 February 1872, J. Atmos. Sol.-Terr. Phy., 70, 1301–1308,
2008.
Silverman, S. M. and Cliver, E. W.: Low-latitude auroras: the magnetic storm of
14–15 May 1921, J. Atmos. Sol.-Terr. Phy., 63, 523–535, 2001.
Sugiura, M.: Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, Pergamon
Press, Oxford, UK, 35, 1964.
Takeuchi, T., Russell, C. T., and Araki, T.: Effect of the orientation of
interplanetary shock on the geomagnetic sudden commencement, J. Geophys.
Res., 107, 1423, https://doi.org/10.1029/2002JA009597, 2002.
Thébault, E., Finlay, C. C., Beggan, C. D., et al.: International
Geomagnetic Reference Field: the 12th generation, Earth Planet. Space, 67, 1,
https://doi.org/10.1186/s40623-015-0228-9, 2015.
Tsurutani, B. T., Gonzales, W. D., Lakhina, G. S., and Alex, S.: The extreme
magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 1268, https://doi.org/10.1029/2002JA009504,
2003.
Usoskin, I. G., Kovaltsov, G. A., Mishina, L. N., Sokoloff, D. D., and Vaquero,
J.: An Optical Atmospheric Phenomenon Observed in 1670 over the City of
Astrakhan Was Not a Mid-Latitude Aurora, Sol. Phys., 292, 15, https://doi.org/10.1007/s11207-016-1035-6, 2017.
Vaquero, J. M., Gallego, M. C., and García, J. A.: Early meteorological
records of Manila: El Niño episode of 1864, Atmósfera, 18, 245–258, 2005.
Vaquero, J. M., Trigo, R., and Gallego, M. C.: Sporadic Aurora in Spain,
Earth Planet. Space, 59, e49–e51, 2007.
Vaquero, J. M., Valente, M. A., Trigo, R. M., and Gallego, M. C.: The 1870
Space Weather Event: Geomagnetic and Auroral Records, J. Geophys. Res., 113,
A08230, https://doi.org/10.1029/2007JA012943, 2008.
Vaquero, J. M., Gallego, M. C., and Domínguez-Castro, F.: A possible case of Sporadic Aurora in 1843 from
Mexico, Geofís. Int., 52, 87–92, 2013.
Vaquero, J. M., Svalgaard, L., Carrasco, V. M. S., Clette, F., Lefèvre,
L., Gallego, M. C., Arlt, R., Aparicio, A. J. P., Richard, J.-G., and Howe,
R.: A Revised Collection of Sunspot Group Numbers, Sol. Phys., 291,
3061–3074, https://doi.org/10.1007/s11207-016-0982-2, 2016.
Vázquez, M., Vaquero, J. M., and Curto, J. J.: On the Connection Between
Solar Activity and Low-Latitude Aurorae in the Period 1715–1860, Sol. Phys., 238,
405–420, https://doi.org/10.1007/s11207-006-0194-2, 2006.
Willis, D. M., Henwood, R., and Stephenson, F. R.: The presence of large
sunspots near the central solar meridian at the times of modern Japanese
auroral observations, Ann. Geophys., 24, 2743–2758, 2006.
Willis, D. M., Stephenson, F. R., and Huiping Fang: Sporadic aurorae observed
in East Asia, Ann. Geophys., 25, 417–436,
https://doi.org/10.5194/angeo-25-417-2007, 2007.
Wilson, C. R. and Sugiura, M.: Hydromagnetic interpretation of sudden
commencements of magnetic storms, J. Geophys. Res., 66, 12, 4097–4111, https://doi.org/10.1029/JZ066i012p04097, 1961.
Yokoyama, N., Kamide, Y., and Miyaoka, H.: The size of the auroral belt
during magnetic storms, Ann. Geophys., 16, 566–573,
https://doi.org/10.1007/s00585-998-0566-z, 1998.
Zhang, Y., Paxton, L. J., Meng, C.-I., Morrison, D., Wolven, B., Kil, H.,
and Christensen, A. B.: Double dayside detached auroras: TIMED/GUVI
observations, Geophys. Res. Lett., 31, L10801, https://doi.org/10.1029/2003GL018949, 2004.
Zhang, Y., Paxton, L. J., and Zheng, Y.: Interplanetary shock induced ring
current auroras, J. Geophys. Res., 113, A01212, https://doi.org/10.1029/2007JA012554, 2008.
Zhou, C., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., An, X., Zhang, X.,
Angelopoulos, V., Ni, B., Gu, X., Fu, S., and Zhao, Z.: Excitation of dayside
chorus waves due to magnetic field line compression in response to
interplanetary shocks, J. Geophys. Res.-Space, 120, 8327–8338,
https://doi.org/10.1002/2015JA021530, 2015.
Short summary
A record has been found of an "aurora" observed on 27 October 1856 in the Philippines, practically at the magnetic equator. An analysis of this report indicates that it could belong to a "sporadic aurora" because of low magnetic activity at that time. We provide a possible physical mechanism that could explain the appearance of this sporadic, low-latitude aurora, according to the analyses on the observational report and magnetic observations at that time.
A record has been found of an "aurora" observed on 27 October 1856 in the Philippines,...