Articles | Volume 35, issue 4
https://doi.org/10.5194/angeo-35-853-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-35-853-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Global geomagnetic responses to the IMF Bz fluctuations during the September/October 2003 high-speed stream intervals
Ezequiel Echer
CORRESPONDING AUTHOR
Space Geophysics Division, National Institute for Space Research (INPE), 12227-010, Sao Jose dos Campos, SP, Brazil
Axel Korth
Planetary Department, Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
Mauricio José Alves Bolzan
Space Physics Laboratory, Federal University of Goias, 78804-020,
Jataí, GO, Brazil
Reinhard Hans Walter Friedel
Los Alamos National Laboratory, National Security Education
Center (NSEC-CSES), MS-T001, Los Alamos, NM 87545, USA
Related authors
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9, https://doi.org/10.5194/npg-2024-9, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
On February 03, 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites in orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm, followed by a second one. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory/modeling) or a high level of satellite collisions.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Adriane Marques de Souza Franco, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 37, 919–929, https://doi.org/10.5194/angeo-37-919-2019, https://doi.org/10.5194/angeo-37-919-2019, 2019
Short summary
Short summary
The wavelet transform was employed in nine HILDCAA events for intervals in which the Cluster crossed the magnetotail in order to identify the most energetic periods of these events in the magnetotail. It was seen that 76 % of the periods identified are ≤4 h. Using the cross wavelet analysis technique between Bz–IMF components and the Bx geomagnetic components, it was identified that the coupling of energy is stronger in periods between 2 and 4 h, which are typical substorm periods.
Adriane Marques de Souza, Ezequiel Echer, Mauricio José Alves Bolzan, and Rajkumar Hajra
Ann. Geophys., 36, 205–211, https://doi.org/10.5194/angeo-36-205-2018, https://doi.org/10.5194/angeo-36-205-2018, 2018
Short summary
Short summary
Cross-wavelet and classical cross-correlation analyses were used in order to study solar-wind–magnetosphere coupling during HILDCAAs. Cross-correlation analyses results show that the coupling between the solar wind and the magnetosphere during HILDCAAs occurs mainly in the period ≤ 8 h. Classical correlation analysis indicates that the correlation between IMF Bz and AE may be classified as moderate (0.4–0.7) and that more than 80 % of the HILDCAAs exhibit a lag of 20–30 min.
B. T. Tsurutani, R. Hajra, E. Echer, and J. W. Gjerloev
Ann. Geophys., 33, 519–524, https://doi.org/10.5194/angeo-33-519-2015, https://doi.org/10.5194/angeo-33-519-2015, 2015
Short summary
Short summary
Particularly intense substorms (SSS), brilliant auroral displays with strong >106A currents in the ionosphere, are studied. It is believed that these SSS events cause power outages during magnetic storms. It is shown that SSS events can occur during all intensity magnetic storms; thus power problems are not necessarily restricted to the rare most intense storms. We show four SSS events that are triggered by solar wind pressure pulses. If this is typical, ~30-minute warnings could be issued.
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9, https://doi.org/10.5194/npg-2024-9, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
On February 03, 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites in orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm, followed by a second one. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory/modeling) or a high level of satellite collisions.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Adriane Marques de Souza Franco, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 37, 919–929, https://doi.org/10.5194/angeo-37-919-2019, https://doi.org/10.5194/angeo-37-919-2019, 2019
Short summary
Short summary
The wavelet transform was employed in nine HILDCAA events for intervals in which the Cluster crossed the magnetotail in order to identify the most energetic periods of these events in the magnetotail. It was seen that 76 % of the periods identified are ≤4 h. Using the cross wavelet analysis technique between Bz–IMF components and the Bx geomagnetic components, it was identified that the coupling of energy is stronger in periods between 2 and 4 h, which are typical substorm periods.
Adriane Marques de Souza, Ezequiel Echer, Mauricio José Alves Bolzan, and Rajkumar Hajra
Ann. Geophys., 36, 205–211, https://doi.org/10.5194/angeo-36-205-2018, https://doi.org/10.5194/angeo-36-205-2018, 2018
Short summary
Short summary
Cross-wavelet and classical cross-correlation analyses were used in order to study solar-wind–magnetosphere coupling during HILDCAAs. Cross-correlation analyses results show that the coupling between the solar wind and the magnetosphere during HILDCAAs occurs mainly in the period ≤ 8 h. Classical correlation analysis indicates that the correlation between IMF Bz and AE may be classified as moderate (0.4–0.7) and that more than 80 % of the HILDCAAs exhibit a lag of 20–30 min.
B. T. Tsurutani, R. Hajra, E. Echer, and J. W. Gjerloev
Ann. Geophys., 33, 519–524, https://doi.org/10.5194/angeo-33-519-2015, https://doi.org/10.5194/angeo-33-519-2015, 2015
Short summary
Short summary
Particularly intense substorms (SSS), brilliant auroral displays with strong >106A currents in the ionosphere, are studied. It is believed that these SSS events cause power outages during magnetic storms. It is shown that SSS events can occur during all intensity magnetic storms; thus power problems are not necessarily restricted to the rare most intense storms. We show four SSS events that are triggered by solar wind pressure pulses. If this is typical, ~30-minute warnings could be issued.