Articles | Volume 35, issue 5
https://doi.org/10.5194/angeo-35-1131-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-35-1131-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Statistical analysis of severe magnetic fluctuations in the near-Earth plasma sheet observed by THEMIS-E
Heqiucen Xu
CORRESPONDING AUTHOR
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Kazuo Shiokawa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Dennis Frühauff
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Related authors
No articles found.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Septi Perwitasari, Takuji Nakamura, Masaru Kogure, Yoshihiro Tomikawa, Mitsumu K. Ejiri, and Kazuo Shiokawa
Ann. Geophys., 36, 1597–1605, https://doi.org/10.5194/angeo-36-1597-2018, https://doi.org/10.5194/angeo-36-1597-2018, 2018
Short summary
Short summary
We have developed a user-friendly program that can efficiently deal with extensive amounts of airglow data. We have applied this new program to airglow data obtained at different latitudes in polar, midlatitude, and equatorial regions and demonstrated distinct differences in atmospheric gravity wave (AGW) propagation characteristics and energy distribution. We aim to encourage other AGW research groups to use the program and do comparisons to reveal AGW characteristics on a more global scale.
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
Dennis Frühauff, Johannes Z. D. Mieth, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 253–262, https://doi.org/10.5194/angeo-35-253-2017, https://doi.org/10.5194/angeo-35-253-2017, 2017
Short summary
Short summary
The determination of the polytropic index the plasma sheet of Earth's magnetosphere using THEMIS data. The data set reveals that the active magnetotail density and pressure data are well correlated. Yet, considering broad distributions of specific entropies, the evaluation is best performed on shorter timescales.
Dennis Frühauff, Ferdinand Plaschke, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 117–121, https://doi.org/10.5194/angeo-35-117-2017, https://doi.org/10.5194/angeo-35-117-2017, 2017
Short summary
Short summary
Vector magnetic field instruments mounted on spacecraft require precise in-flight calibration of the offsets of all three axes, i.e., the output in vanishing ambient field. While calibration of the spin plane offsets is trivial, we apply a new technique for determining the spin axis offset, not relying on solar wind data but on magnetosheath encounters. This technique is successfully applied to the satellites of the THEMIS mission to update the calibration parameters of the complete mission.
Dennis Frühauff and Karl-Heinz Glassmeier
Ann. Geophys., 34, 399–409, https://doi.org/10.5194/angeo-34-399-2016, https://doi.org/10.5194/angeo-34-399-2016, 2016
Short summary
Short summary
This study presents an investigation on the occurrence of fast flows in the magnetotail using the complete available data set of the THEMIS spacecraft for the years 2007 to 2015. First, basic statistical findings concerning velocity distributions, occurrence rates, group structures and key features of 16 000 events are presented using Superposed Epoch and Minimum Variance Analysis techniques.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
J. A. Wanliss, K. Shiokawa, and K. Yumoto
Nonlin. Processes Geophys., 21, 347–356, https://doi.org/10.5194/npg-21-347-2014, https://doi.org/10.5194/npg-21-347-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Y. Otsuka, K. Suzuki, S. Nakagawa, M. Nishioka, K. Shiokawa, and T. Tsugawa
Ann. Geophys., 31, 163–172, https://doi.org/10.5194/angeo-31-163-2013, https://doi.org/10.5194/angeo-31-163-2013, 2013
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4592 KB) - Full-text XML
Short summary
In this study, we statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet. For the first time, we showed the occurrence rates of these fluctuations. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We also discussed how both the inside-out and outside-in substorm models can be used to explain these observed results.
In this study, we statistically analyzed severe magnetic fluctuations in the nightside...