Articles | Volume 34, issue 3
https://doi.org/10.5194/angeo-34-347-2016
https://doi.org/10.5194/angeo-34-347-2016
Regular paper
 | 
21 Mar 2016
Regular paper |  | 21 Mar 2016

Three-model ensemble wind prediction in southern Italy

Rosa Claudia Torcasio, Stefano Federico, Claudia Roberta Calidonna, Elenio Avolio, Oxana Drofa, Tony Christian Landi, Piero Malguzzi, Andrea Buzzi, and Paolo Bonasoni

Abstract. Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council – Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time.

Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

Download
Short summary
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. This work shows the application of a technique to improve wind forecasting. The study area is southern Italy.