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Abstract. Quality of wind prediction is of great impor-

tance since a good wind forecast allows the prediction of

available wind power, improving the penetration of renew-

able energies into the energy market. Here, a 1-year (1 De-

cember 2012 to 30 November 2013) three-model ensem-

ble (TME) experiment for wind prediction is considered.

The models employed, run operationally at National Re-

search Council – Institute of Atmospheric Sciences and Cli-

mate (CNR-ISAC), are RAMS (Regional Atmospheric Mod-

elling System), BOLAM (BOlogna Limited Area Model),

and MOLOCH (MOdello LOCale in H coordinates). The

area considered for the study is southern Italy and the mea-

surements used for the forecast verification are those of the

GTS (Global Telecommunication System). Comparison with

observations is made every 3 h up to 48 h of forecast lead

time.

Results show that the three-model ensemble outperforms

the forecast of each individual model. The RMSE improve-

ment compared to the best model is between 22 and 30 %, de-

pending on the season. It is also shown that the three-model

ensemble outperforms the IFS (Integrated Forecasting Sys-

tem) of the ECMWF (European Centre for Medium-Range

Weather Forecast) for the surface wind forecasts. Notably,

the three-model ensemble forecast performs better than each

unbiased model, showing the added value of the ensemble

technique. Finally, the sensitivity of the three-model ensem-

ble RMSE to the length of the training period is analysed.

Keywords. Meteorology and atmospheric dynamics

(mesoscale meteorology)

1 Introduction

Wind farm power prediction is of great importance for re-

newable energy applications (Giebel et al., 2011; Monteiro et

al., 2009; Pinson et al., 2009). Typically, for the prediction of

wind energy on timescales longer than 3–6 h, the models for

power prediction include the output of a numerical weather

prediction model, which is eventually scaled at the turbine

hub height and/or interpolated or averaged over an area rep-

resentative of the wind farm location (Monteiro et al., 2009;

Frías et al., 2009). Hence, the quality of the power forecast

at different forecasting ranges depends on the quality of the

wind prediction over the area of the wind farm (Alessandrini

et al., 2013; Pinson et al., 2007; Von Bremen, 2007). The ca-

pability of the wind forecast to enhance the penetration of

wind energy into the energy market is particularly important

in areas where the grid, i.e. the interconnected system for the

distribution of the electricity especially at high and medium

tension, is poorly developed (as in southern Italy, where this

study is focused) and originally not built to support the dis-

tributed input of wind power (Alessandrini et al., 2011).

This paper reports the performance of a three-model en-

semble (hereafter referred to as TME) experiment (Krish-

namurti et al., 1999, 2000) in southern Italy for 10 m wind

prediction. The TME is calculated starting with the fore-

casts of three different models: RAMS (Regional Atmo-

spheric Modelling System; Cotton et al., 2003; Tiriolo et

al., 2015), BOLAM (BOlogna Limited Area Model; Mal-

guzzi et al., 2006), and MOLOCH (MOdello LOCale in

H coordinates; Malguzzi et al., 2006). All models are op-

erational at National Research Council – Institute of Atmo-

spheric Sciences and Climate (CNR-ISAC). In their real-

time implementation, MOLOCH is nested into the BOLAM
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model, which uses initial and boundary conditions taken

from the 00:00 UT run of the National Centers for Environ-

mental Prediction (NCEP) Global Forecasting System (GFS)

global model, while the RAMS model is initialized and

driven by initial and boundary conditions obtained from the

12:00 UT run of the ECMWF (European Centre for Medium-

Range Weather Forecasts) IFS (Integrated Forecasting Sys-

tem) model. The RAMS forecast lasts 60 h and starts at

12:00 UT: the first 12 h are spin-up time and are discarded,

so the RAMS initial validity time is 00:00 UT of the day fol-

lowing the initial day of run. The initial time is 00:00 UT for

BOLAM and 03:00 UT for MOLOCH, i.e. 3 h later than BO-

LAM. This choice is made to avoid the initialization of the

high-resolution model directly over global analyses.

Results are shown for southern Italy because the RAMS

model in the configuration employed here attains its maxi-

mum resolution over that area. The forecasts’ final validity

is 48 h, and the evaluation comprises a whole year (1 De-

cember 2012–30 November 2013). Model outputs, as well

as TME evaluations, are available every 3 h. To consider the

performance of the TME regarding the wind direction fore-

cast, the comparison between the TME and individual model

forecasts is made separately for the horizontal wind speed

and the zonal (u) and meridional (v) wind components.

Because of the annual variability of the Mediterranean cli-

mate, results are stratified seasonally. Southern Italy is char-

acterized by a typical Mediterranean climate with a high sea-

sonal dependence.

In the summertime anticyclonic conditions prevail over the

area and large-scale winds are generally weak. In such condi-

tions breeze circulations develop along the coasts and inland,

representing the dominant circulation. Winter cyclones and

synoptic-scale circulations dominate in the cold season (form

November to March; Bolle, 2012; Federico et al., 2008; Hur-

rell, 1995).

Another point considered in this paper is the evaluation of

the added value of the TME technique compared to the fore-

cast of each unbiased model (Carter et al., 1989; Glahn and

Lowry, 1972; Wilks, 2006). For this study, the TME forecast

is compared with the forecasts obtained from each individual

model after the systematic error (bias) has been removed.

The sensitivity of the TME performance to the choice of

the training period is also studied. Finally, the performance of

the TME is compared with that of the global IFS model (http:

//www.ecmwf.int/en/forecasts/documentation-and-support/

changes-ecmwf-model/cycle-41r1) of the ECMWF, which

is taken here as benchmark, over the same target area.

It is important to note that there are many differences in the

physics, dynamics and numerical schemes among the models

involved in this study that have an important impact on the

models’ performance. Among these differences two are of

particular importance: (a) BOLAM and IFS are hydrostatic

models, while RAMS and MOLOCH are non-hydrostatic,

and (b) the horizontal grid spacings of the models involved

Figure 1. Model domains: BOL shows the BOLAM domain, MOL

shows the MOLOCH domain, R1 shows the RAMS first domain,

and R2 shows the RAMS second domain. The R2 grid is nested

into the R1 grid with a two-way nesting.

are quite different (IFS, ∼ 25 km; BOLAM, 10 km; RAMS,

3 km; MOLOCH, 2 km).

For motions in the meso-β and meso-γ (i.e. between

10 and 100 km as breeze circulations, thunderstorms, and

mountain gravity waves, among others), the hydrostatic ap-

proximation weakens and has an impact on the IFS and BO-

LAM performance.

For the point (b) above it is important to note that the oro-

graphic complexity of southern Italy, involving both the sea–

land contrast and mountainous areas, is better resolved as

the horizontal grid spacing becomes higher, penalizing the

performance of BOLAM and IFS compared to RAMS and

MOLOCH.

The paper is organized as follows: in Sect. 2, the model

configurations, the data set used for the verification, and

the TME procedure are described; results are presented in

Sect. 3, while conclusions are given in Sect. 4.

2 Data and methodology

2.1 Models configuration

This study, in addition to the IFS output, uses three meteoro-

logical models operational at CNR-ISAC: RAMS, BOLAM,

and MOLOCH.

A detailed description of the RAMS model, which is oper-

ational in southern Italy (Tiriolo et al., 2015) with a configu-

ration similar to that used in this paper, is given in Cotton et

al. (2003). Two two-way nested domains are used (Fig. 1) at

12 and 3 km grid spacing, respectively. The first grid cov-

ers the central Mediterranean Basin, while the second ex-

tends over the whole of southern Italy. Thirty-five vertical

levels, up to about 22 000 m in a terrain-following coordinate

system, are used for both domains. Levels are not equally
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spaced: layers below 1500 m a.g.l. are between 50 and 200 m

thick, whereas layers in the middle and upper troposphere

(> 7000 m a.g.l.) are 1000 m thick. The first level is 20 m

above the surface and the wind speed is scaled to a height

of 10 m with a logarithmic profile. For the experiment in this

paper, initial and (6 hourly1) boundary conditions are given

by the ECMWF operational analysis and forecast cycle at

12:00 UT.

The Land Ecosystem–Atmosphere Feedback

model (LEAF) is used to calculate the exchange be-

tween soil, vegetation, and atmosphere (Walko et al., 2000).

LEAF is a representation of surface features, including veg-

etation, soil (eight levels), lakes and oceans, and snow cover,

and their influence on each other and on the atmosphere. Sea

surface temperature is kept fixed for each RAMS simulation

and is interpolated from the IFS analysis at 12:00 UT of the

starting day of the simulation.

Explicitly resolved precipitation is computed by a bulk

microphysical scheme, which considers the mixing ratios of

seven water categories: cloud water, rain, pristine ice, snow,

ice aggregates, graupel, and hail (Walko et al., 1995). The

scheme uses a generalized gamma size spectrum and uses

a stochastic collection rather than a continuous accretion. It

includes a heat budget equation for each hydrometeor class,

allowing heat storage and the existence of mixed phase hy-

drometeors. The sub-grid-scale effect of convective and non-

convective clouds is parameterized following Molinari and

Corsetti (1985) who modified the Kuo scheme (Kuo, 1974)

to account for updrafts and downdrafts. Unresolved vertical

transport is parameterized by the K theory, in which the co-

variance is evaluated as the product of an eddy mixing coef-

ficient and the gradient of the transported quantity. The tur-

bulent mixing in the horizontal directions is parameterized

following Smagorinsky (1963); it relates the mixing coeffi-

cients to the fluid strain rate and includes corrections for the

influence of the Brunt–Väisälä frequency and the Richard-

son number (Pielke, 2002). The radiation scheme detailed in

Chen and Cotton (1983) is used for short- and long-wave ra-

diation. The scheme accounts for the total condensate present

in the atmosphere.

BOLAM is a hydrostatic, primitive-equation, limited-area

model that has been developed at CNR-ISAC since the early

1990s. It has been compared with other mesoscale mod-

els in the course of the Comparison of Mesoscale Predic-

tion and Research Experiments (COMPARE), a multi-annual

project organized by the World Meteorological Organiza-

tion (Nagata et al., 2001). MOLOCH is a non-hydrostatic,

convection-permitting model developed by CNR-ISAC since

early 2000s (Malguzzi et al., 2006) and designed for high

horizontal resolution with hybrid terrain-following coordi-

nates. MOLOCH is nested into the BOLAM model with a

1In this paper the model performance is evaluated every 3 h.

However, when simulations were performed with the RAMS model,

the boundary conditions were downloaded every 6 h.

one-way procedure. Both models employ rotated latitude–

longitude coordinates to optimize computational efficiency.

BOLAM and MOLOCH have in common the physical

parameterization schemes, with some adjustments to ac-

count for their different resolution. Radiation is based on the

ECMWF radiation scheme (Morcrette, 1991). Large-scale

precipitation is computed according to single moment bulk

microphysics of the Kessler type, with five water species and

pristine ice parameterization. Deep convection is parameter-

ized in the hydrostatic BOLAM model only, using a modified

Kain–Fritsch scheme (Kain, 2004). The sub-grid turbulence

is taken into account with a 1.5 closure that contains a prog-

nostic equation for the turbulent kinetic energy (E-l scheme;

Zampieri et al., 2005). Surface layer is parameterized accord-

ing to the Monin–Obukov similarity theory. Finally, a pa-

rameterization of soil water and temperature exchange, very

similar to the Hydrology-Tiled ECMWF Scheme for Sur-

face Exchange over Land (H-TESSEL), is implemented with

seven soil layers.

BOLAM and MOLOCH are used for experimental, real-

time forecasting activity under a cooperative agreement with

the Italian Civil Protection Agency. Short-term forecasts are

made every day with initial and 3-hourly boundary con-

ditions obtained from the GFS model of NCEP, acces-

sible at http://www.isac.cnr.it/_dinamica/projects/forecasts/.

Model output of selected surface fields is available every

hour and archived in General Regularly-distributed Informa-

tion in Binary form (GRIB2) format. Current horizontal reso-

lution is 8.5 km for BOLAM (in the European area; 10 km for

the experiment considered in this paper) and 1.5 km (2.2 km

for the experiment considered in this paper) for MOLOCH

over the entire Italian territory (Fig. 1). Both models are im-

plemented with 50 vertical levels. The lowermost BOLAM

(MOLOCH) level is located at about 30 m (70 m) above

orography, while the model top is about 36 000 m high.

Starting from RAMS, BOLAM, and MOLOCH 10 m wind

forecasts, a TME forecast was computed for the period rang-

ing from 1 December 2012 to 30 November 2013. For each

day and model, 2-day forecasts are considered, with model

outputs and TME forecasts available every 3 h. As stated in

the Introduction, RAMS and the BOLAM–MOLOCH chain

use different initial and boundary condition data sets.

2.2 Observational data set

The SYNOP reports distributed through the GTS (Global

Telecommunication System) are used to evaluate the perfor-

mance of the models. Data for wind speed and direction are

considered, which are converted into the zonal (i.e. west–east

direction, u) and meridional (i.e. south–north direction, v)

wind components to assess the ability of the three-model en-

semble to improve the forecast of the wind direction.

Verification is made over southern Italy; the stations dis-

tributed through the GTS are shown in Fig. 2. The SYNOP

data were downloaded from the MARS (Meteorological

www.ann-geophys.net/34/347/2016/ Ann. Geophys., 34, 347–356, 2016
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Figure 2. The SYNOP stations distributed through the GTS over

southern Italy. The colours represent the station elevation.

Archive and Retrieval System) of the ECMWF. Available re-

ports for each station vary depending on the season and fore-

casting time because either they are not transmitted through

the GTS or they are flagged as missing data. A detailed de-

scription of the data available (all stations) for each of the

four seasons considered in this work can be found in Table 1.

Only the first day is shown because the number of data has

(nearly) a 24 h periodicity.

The RAMS, BOLAM, and MOLOCH (hereafter referred

to as M1, M2, and M3, respectively) forecasts are interpo-

lated bilinearly to the positions of the SYNOP observations,

for all stations available at a given forecast time. We consider

the forecast–observed wind speed and the forecast–observed

horizontal wind components. Then, bias and RMSE statistics

are calculated for each model, as well as for the TME, con-

sidering all the forecast–observed pairs available over south-

ern Italy (Fig. 2) at each forecasting time.

2.3 The multi-model approach

In order to improve the performance of each model, the TME

post-processing technique is adopted. In this technique (see

Krishnamurti et al. (1999, 2000) for a detailed description)

several models are weighted with an adequate set of weights

computed during a training period. More specifically, the

TME forecast at each station location is given by

S =O +

N∑
i=1

ai
(
Fi −F i

)
, (1)

where N is the number of the models forming the TME,

ai is the weight of the ith model, Fi is the forecast of the

ith model, F i is its mean value over the training period, and

O is the mean observation over the training period.

Table 1. Number of data available at different forecasting times over

southern Italy from the SYNOP reports of wind speed and direction

for each season. The table shows the first day. For the second day

the available data show similar values (compare 0 and 24 h).

Hour Winter Spring Summer Fall

0 2133 2167 1947 1887

3 2196 2223 2010 1924

6 2802 2855 2585 2569

9 2815 2988 2889 2563

12 2882 2991 2966 2738

15 2927 3050 3000 2684

18 2866 2945 2889 2515

21 2167 2194 2074 1934

24 2133 2166 1947 1890

The calculation of the weight ai is given by the minimiza-

tion of the mean square distance D2:

D2
=

L∑
k=1

(Sk −Ok)
2, (2)

whereL is the training period length. In this paper,N = 3 and

the TME is calculated for each station of the GTS of Fig. 2.

In principle, the weights could be disaggregated according to

the forecast validity or at least the hour of the day. However,

lumping together all forecast validities gave comparatively

better results and is considered in the following. This issue is

likely caused by the need for a longer training data set to give

a more reliable estimate of the TME weights, disaggregated

according to the forecast validity, compared to that possible

in this study.

In the following sections, the TME performance is quanti-

fied considering 20 forecast attempts. The performance of the

TME computed with weights disaggregated according to the

forecast validity gave similar, yet worse, results compared to

those shown in the following sections.

The training data set is 80 % of the available data and, to

consider the natural variability of the Mediterranean climate,

statistics are stratified according to seasons. Therefore, for

each season and station, the available data set is divided into

two parts: a training period containing 80 % of the data and a

forecasting period with the remaining 20 %. The weights ai
are evaluated over the training period and are then used to

compute the forecast (“cross evaluation”). Moreover, to get

a more robust assessment of the impact of the TME on the

wind forecast, Eqs. (1) and (2) are applied 20 times, ran-

domly selecting the 80 % data set of the training period and

the 20 % of the forecast period.

In addition to the wind speed, in order to extend the TME

forecast to the wind direction as well, we applied the TME

to the zonal and meridional wind components separately. For

this analysis, wind speed and direction observed by the GTS

were converted into horizontal components.

Ann. Geophys., 34, 347–356, 2016 www.ann-geophys.net/34/347/2016/
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Table 2. RMSE and bias for the TME and for each single model for the four seasons. Scores are relative to the wind speed (WSP) and to

the zonal and meridional wind components. The scores of the IFS model are reported as reference. Values in parentheses show the error in

percentage of the seasonally averaged wind speed.

TME M1 M2 M3 IFS

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

(ms−1) (ms−1) (ms−1) (ms−1) (ms−1) (ms−1) (ms−1) (ms−1) (ms−1) (ms−1)

Winter

WSP
2.0 −0.0 2.7 −0.4 3.1 −0.2 3.0 0.3 3.0 −0.3

(44) (0) (59) (−8) (67) (−5) (66) (6) (64) (−6)

u 2.6 0.0 3.0 0.2 3.3 0.2 3.5 0.6 3.2 0.4

v 2.6 0.0 3.0 0.2 3.3 0.3 3.4 0.2 3.1 0.0

Spring

WSP
1.9 0.0 2.5 −0.4 2.7 −0.4 2.7 0.1 2.6 −0.5

(43) (0) (56) (−8) (62) (−9) (61) (2) (60) (−10)

u 2.3 −0.0 2.8 −0.1 3.0 −0.3 3.1 0.1 2.9 −0.0

v 2.4 0.0 2.8 0.2 2.8 0.1 3.0 0.2 2.7 0.1

Summer

WSP
1.4 −0.0 2.0 −0.5 2.0 −0.5 2.0 −0.2 2.0 −0.7

(40) (0) (56) (−13) (58) (−15) (57) (−6) (56) (−19)

u 1.9 −0.0 2.1 −0.0 2.2 0.0 2.3 0.0 2.1 −0.0

v 1.9 0.0 2.2 0.0 2.2 0.0 2.3 −0.1 2.1 −0.0

Fall

WSP
1.8 0.0 2.3 −0.6 2.6 −0.6 2.5 −0.2 2.5 −0.7

(46) (0) (58) (−14) (66) (−16) (64) (−5) (64) (−18)

u 2.2 0.0 2.5 −0.0 2.8 −0.2 2.9 −0.0 2.7 −0.0

v 2.1 −0.0 2.5 0.3 2.6 0.2 2.7 0.3 2.5 0.2

3 Results

3.1 Multi-model performance

In this section, the performance of the TME, as well as that

of each individual model, is presented and discussed.

Figure 3 shows the RMSE and bias of the TME and of

each model of the wind speed for the winter season. The

same quantities computed for the IFS are also reported for

comparison. The RMSE (Fig. 3a) of the models M1–M3

varies from 2.6 to 3.3 ms−1 depending on the forecast time,

with M1 showing the best performance on average, while the

RMSE of the TME varies between 1.9 and 2.2 ms−1. From

Fig. 3a it is apparent that the TME reduces the RMSE for

all forecasting times. This is confirmed by the difference be-

tween the RMSE of the best model (of M1–M3) and that of

the TME, which is larger than 0.6 ms−1 for all times (lower

curve in Fig. 3a). It is worth noting that this difference is, for

several forecast times, larger than 20 % of the RMSE of M1–

M3 (≈ 3.0 ms−1), showing the important improvement of the

TME ensemble on the wind speed forecast.

Regarding the variability of the RMSE for the 20 attempts,

a rather stable result is noted, with the interval between the

25th and 75th percentile less than 0.5 ms−1 for all forecasting

times.

The increase in the RMSE (and in the RMSE variability

over the 20 attempts) at specific times is caused by the dis-

tribution of the wind values used for the verification. When

the distribution of the wind speed spans a comparatively

larger data interval, as for t + 18 h compared, for example,

to t + 15 h, the RMSE spread increases. Moreover, because

of the difficulty to forecast high wind speeds, the RMSE av-

eraged over the 20 attempts increases for wind distributions

involving larger winds, as for t + 18 h compared to t + 15 h.

The IFS performance for surface wind forecast is similar

to that of M1–M3, showing the goodness of the IFS fore-

cast despite its coarser horizontal resolution and the fact that

IFS is a hydrostatic model. While the use of the GFS ini-

tial and dynamic boundary conditions could determine, at

specific forecast times, a worse performance of M2 and M3

compared to IFS, we know from previous experience that

M2 and M3 underperform compared to IFS also when IFS

analyses and boundary conditions (BC) are used. This as-

pect has to do with the parameterization of surface layer or

planetary boundary layer (PBL) and in particular with the

fact that the M3 model is poorly resolved above the sur-

face (lowest level at 70–80 m). Moreover, the RMSE favours

smoother large-scale fields compared to higher-resolution

smaller-scale fields.

However, the TME outperforms M1–M3 and IFS. The

RMSE improvement of TME is further quantified in Table 2,

which shows the averaged value of the RMSE over all fore-

cast times for each model and season. Focusing on winter, we

note that the RMSE of M1–M3 is between 59 and 67 % of the

averaged wind speed in winter, while the RMSE of TME is

reduced to 44 % of the averaged wind speed in winter.

Another important aspect of the wind speed forecast is its

bias. Figure 3b shows the winter bias for M1–M3, TME, and

www.ann-geophys.net/34/347/2016/ Ann. Geophys., 34, 347–356, 2016
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Figure 3. RMSE (a) and bias (b) for the winter wind speed versus

forecast time. M1, M2, and M3 are the three models forming the

TME, while the IFS model is shown for comparison. The difference

between the RMSE of the best model (of M1–M3) and that of the

TME is also shown in (a). The boxes on the TME RMSE curve

show the 25th and 75th percentile of the RMSE distribution for the

20 attempts, while the error bars extend between the maximum and

minimum value of the RMSE for the 20 attempts.

IFS. The TME bias is closer to 0 compared to other models

for each forecast time. This is also shown by the values of

Table 2, which shows a bias of about 0.3 ms−1 for all models

(varying between −8 and 6 % of the averaged wind speed

value in winter). The bias is negative for all models but M3,

with an absolute value less than 0.05 ms−1 for the TME case.

The values of Table 2 show that the TME wind speed forecast

is approximately unbiased.

To consider the variability of the results with the season,

Fig. 4a and b show the RMSE and the bias, respectively,

of the summer wind speed. Figure 4a shows that the best

model changes with forecasting time among M1, M2, and

M3. The RMSE values for M1–M3 and IFS are between

1.8 and 2.3 ms−1, depending on forecast time.

From Fig. 4a it is apparent that the TME outperforms

the models M1–M3. In particular, the difference between

the RMSE of the best model and that of the TME is above

Figure 4. Same as Fig. 3 but for the summer season.

0.4 ms−1 for all forecasting times, showing that the TME

RMSE is about 20 % less than those of M1–M3.

Considering the RMSE of the TME for the 20 attempts, we

note that the interval between the 25th and 75th percentile

is lower than 0.3 ms−1 for all forecast times, showing the

statistical robustness of the multi-model. A diurnal cycle of

the RMSE with larger values in the afternoon is also noted.

This is caused by the development of sea breeze circulations,

which increases both the surface wind speed and its variabil-

ity among the stations involved.

The results of Fig. 4a are further quantified in Table 2. In

summer, considering the average over all forecasting times,

the RMSE for M1–M3 and IFS is about 2.0 ms−1 (55–60 %

of the summer averaged wind speed). The RMSE reduces

to 1.4 ms−1 (40 % of the summer averaged wind speed) for

TME.

The bias in summer shows again that the TME is approx-

imately unbiased. More specifically the averaged value of

the bias over the forecasting times varies between −0.2 and

−0.5 ms−1 for M1–M3, while its absolute value is less than

0.05 ms−1 for the TME.

The results for spring and fall are considered in Table 2.

We note that the RMSEs for M1–M3 and IFS are between the

values of summer and winter. In all cases, the TME has a rel-

evant impact on the wind speed forecast because the RMSE
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is reduced from 56 % (best model) to 43 % of the averaged

wind speed in spring and from 58 % (best model) to 46 % of

the averaged wind speed in fall.

Regarding the bias, the results of Table 2 show that the

TME bias is, in absolute value, less than 0.05 ms−1, while it

varies between 0.1 and 0.6 for M1–M3. It is also noted that

the TME outperforms the IFS model both for the bias and

RMSE in all seasons and that the IFS errors are similar to

those of M1–M3 showing the skill of the IFS forecast.

Table 2 shows that the RMSE of the wind speed has

its maximum in winter and its minimum in summer, while

spring and fall RMSEs are between those of summer and

winter. This seasonal behaviour is determined by the dif-

ferent seasonal wind regimes in the central Mediterranean

(Bolle, 2012). More specifically, winds over southern Italy

are dominated by the breeze circulation in summer. This is

especially valid for the SYNOP stations of Fig. 2, which are

mainly located by the sea. On the other hand, the incidence

of the cyclones over southern Italy is at a maximum in win-

ter. As a consequence, the winds are less intense and follow

a more regular pattern in summer compared to winter, and

the wind forecast shows a comparatively better performance.

Spring and fall share characteristics with both summer and

winter and their wind forecast performance is between that

of summer and fall.

This characteristic of the Mediterranean climate is well

represented by the year considered in this paper. Figure 5

shows the wind speed averaged for all SYNOP stations of

Fig. 2 for the different seasons of the year. It is apparent

that the largest wind speeds occur in winter (with the excep-

tion of 09:00 UT when the maximum is attained in spring),

when the incidence of the cyclones is at a maximum (Bolle,

2012), while the lowest wind speeds occur in summer, when

the wind regime is dominated by the breeze (Tiriolo et al.,

2015). Spring and fall share characteristics with both sum-

mer and winter and wind speeds have values between those

of summer and winter.

Figure 5 also shows a diurnal cycle in all seasons due to

the thermally forced local circulations (Federico et al., 2010;

Mangia et al., 2004). The amplitude of the cycle is largest in

summer and smallest in winter because of both the greater

insolation in summer and the larger number of cyclones that

cross southern Italy in winter. Again the fall and spring be-

haviour is between that of summer and winter.

To show the impact of the TME on the forecast of the wind

direction, we consider the results for the ensemble applied to

each horizontal wind component (Table 2). It can be seen

that the improvement of the TME is found for all seasons

and for both RMSE and bias. For the RMSE the improve-

ment is larger than 10 % of the M1–M3 RMSE, showing a

sizable impact of the TME on the zonal wind components

forecast, while the bias evaluation indicates that the TME is

approximately unbiased. The comparison between the TME

RMSE and that of the best model for each forecasting time

Figure 5. Averaged wind speed for the different seasons as a func-

tion of the hour of the day (every 3 h). The average has been com-

puted grouping all the available data of the SYNOP stations for the

period 1 December 2012–30 November 2013.

shows a reduction of 0.4 ms−1 for both components and for

all forecasting times (figures not shown).

A common feature evidenced in Figs. 3 and 4 is the small

error growth with increasing forecast lead time. In fact, al-

most all the RMSE is already present at the first instant

(+3 h) and at the time of initial condition (00:00 UT, not

shown). This is true for all the models considered here, re-

gardless of the originating centre (GFS or IFS) from which

the initial conditions are taken, and for the 10 m wind down-

loaded from the ECMWF MARS archive. The mismatch

between analyses and SYNOP observations may be due to

many reasons, such as approximations in the model orog-

raphy, surface layer parameterization, and overweighting of

background with respect to observations in the assimilation

procedures.

Overall, this section shows that the TME technique rep-

resents an important improvement in the forecasting of the

wind speed and horizontal wind components for the model

configurations in the area considered in this paper.

3.2 Comparison between multi-model and unbiased

models

In this section we investigate the added value of the TME

compared to the unbiased forecast (Carter et al., 1989; Glahn

and Lowry, 1972; Wilks, 2006). More specifically, the TME

forecast (the TME is computed from biased models) is com-

pared with the forecast of M1–M3 (and IFS for reference)

after applying bias removal from all model outputs.

Figure 6 shows the RMSE versus forecast time of the wind

speed for the winter season. We note that the RMSE of M1–

M3 is between 2.2 and 2.7 ms−1, significantly lower than that

reported in Fig. 3a (about 0.5 ms−1 less, i.e. 17 % of the M1–

M3 and IFS RMSE). This improvement, which is the conse-

quence of the bias removal from single-model forecasts, has
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Figure 6. Winter RMSE for the wind speed after bias elimination.

The difference between the RMSE of the best model (depending on

the forecast time) and that of the TME is also shown (BEST-TME).

an important impact on the forecast of wind speed. In partic-

ular, the relative error computed in respect of the seasonally

averaged wind speed decreases by more than 10 % for M1–

M3 (compare Tables 2 and 3). Nonetheless, the TME fore-

cast for wind speed is still better than that of all unbiased

forecasts, the TME RMSE being between 2.0 and 2.2 ms−1

for all forecast times. This is confirmed, in Fig. 6, by the dif-

ference between the best model and the TME forecast, which

is between 0.2 and 0.3 ms−1.

While the error of the unbiased forecast of M1–M3 ranges

between 47 and 57 % of the seasonal average wind speed

value, the TME relative error is between 43 and 46 %, show-

ing the added value of the TME approach. Table 3 shows

that the TME outperforms the unbiased IFS forecast, which,

however, shows performance comparable to the best model

of M1–M3.

Similar results are found for the zonal and the meridional

wind components (not shown), whose difference between the

RMSE of the best model and that of the TME is between

0.3 and 0.5 ms−1, depending on the forecast time.

Considering the variability of the TME RMSE for the

20 attempts, a variability less than 1 ms−1 is noted for most

forecasting times, while the interval between the 25th and

75th percentile is in most cases less than 0.5 ms−1.

Table 3 shows the average RMSE over all forecasting

times of the unbiased models. Focusing on winter wind

speed, we note that the RMSE of the best unbiased model

is 2.3 ms−1, while the RMSE of the TME is 2.0 ms−1. Ta-

ble 3 further shows that the improvement is resilient be-

cause it occurs in all seasons. The TME RMSE for winter

is 2.6 ms−1 for both wind components, while that of the best

M1–M3 model is 2.9 ms−1.

Comparing the results of Tables 2 and 3, it is apparent that

the unbiased forecast for the zonal and meridional wind com-

ponents has a lower improvement with respect to that of the

wind speed. This occurs in all seasons. This smaller improve-

Table 3. Same as Table 2 but for the unbiased models (RMSE only).

Values in parentheses show the error in percentage of the seasonally

averaged wind speed.

TME M1 M2 M3 IFS

RMSE RMSE RMSE RMSE RMSE

(ms−1) (ms−1) (ms−1) (ms−1) (ms−1)

Winter

WSP
2.0 2.3 2.4 2.6 2.3

(44) (47) (52) (55) (50)

u 2.6 2.9 3.2 3.4 3.1

v 2.6 2.9 3.2 3.3 3.0

Spring

WSP
2.0 2.2 2.3 2.4 2.2

(45) (50) (52) (55) (50)

u 2.3 2.8 2.9 3.1 2.9

v 2.4 2.7 2.7 2.9 2.7

Summer

WSP
1.4 1.7 1.7 1.8 1.6

(43) (49) (49) (51) (47)

u 1.9 2.1 2.1 2.2 2.0

v 1.9 2.1 2.1 2.2 2.1

Fall

WSP
1.8 2.0 2.1 2.2 2.0

(46) (51) (54) (57) (51)

u 2.2 2.5 2.8 2.8 2.7

v 2.1 2.3 2.4 2.6 2.4

ment is caused by the smaller bias of the zonal and merid-

ional wind forecast, so that bias removal is less effective for

these quantities. Table 3 shows that, in all cases, the TME

performs better than the unbiased models, and that the TME

outperforms the unbiased IFS forecast as well.

Overall, the results of this section show that the TME im-

proves the forecast compared to the unbiased models, pro-

viding an additional value.

3.3 Variability with the training period

In this section, the sensitivity of the TME forecast to the

length of the training period is analysed. Figure 7 shows

the RMSE difference between the best model and the TME,

for the winter wind speed, for a different training data set,

namely 90, 80, 60, and 40 % of the available data. It is impor-

tant to point out that the RMSE differences shown in Fig. 7

are computed over the same data set, so that the curves of

Fig. 7 are directly comparable. This data set is that remain-

ing when the TME is trained with 90 % of the available data,

which is the largest data set not used for training any TME

(90, 80, 60, and 40 %).

Figure 7 shows that the TME forecast improves the wind

speed forecast, also using 40 % of the available data set for

training. These results indicate the potential of the TME for

wind speed forecast even when using a short training period

(36 days for each season in this case).

As expected, the TME performance worsens for shorter

training periods. The difference among the different training

periods may become substantial for specific forecast times.

For example, at 12 h of forecast time, the TME RMSE in-
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Figure 7. Difference between the RMSE (best model minus TME)

of the winter wind speed forecast for different percentages of train-

ing data.

creases by more than 0.1 ms−1 when 40 % of the training

data set is used instead of 80 %.

4 Conclusions

This paper shows the performance of a TME forecasting sys-

tem for the near-surface wind prediction over southern Italy.

The study was motivated by the need to improve the qual-

ity of near-surface wind forecast, in particular to enhance the

penetration of renewable energies into the energy market.

The TME is formed by the models RAMS, BOLAM,

and MOLOCH, which are all currently operational at CNR-

ISAC. The study extends over a 1-year span (1 Decem-

ber 2012 to 30 November 2013), and the results are disaggre-

gated on a seasonal basis to account for the natural variability

of the Mediterranean climate. In addition to the wind speed,

the impact of the TME technique on the zonal and meridional

wind components is considered in order to show the potential

of the TME prediction of the wind direction.

In general, it is found for all models considered that the er-

ror increase with forecast lead time is small relative to the av-

erage error present in the initial conditions. Results show that

the TME forecast improvement for the wind speed is larger

in winter (0.7 ms−1 of RMSE reduction with respect to that

of the best M1–M3 model) and smaller in fall (0.5 ms−1). In

all seasons, the RMSE of the TME is reduced by at least 10 %

with respect to the best model, this improvement often being

around 20 %. The TME improvement is resilient because it

is found for all seasons and for all forecasting times. These

results show the important impact of the TME on the wind

speed forecast.

Another important result is that the TME bias for the wind

speed is lower than those of the single models. Averaged over

all forecasting times, the TME bias is, in absolute value, less

than 0.05 ms−1. Similar results are found for the zonal and

meridional wind components, so that we can confirm that the

TME is also effective for wind direction prediction.

The TME forecast is compared with the IFS forecast,

which is taken here as a benchmark. Despite the lower spa-

tial horizontal resolution, the IFS performance for surface

wind forecast is similar to that of RAMS, BOLAM, and

MOLOCH, showing the skill of the IFS forecast. It is found

that the TME outperforms the IFS forecast for all seasons

and forecast times.

The added value of the TME is further studied by compar-

ing the wind forecast made by each unbiased model and the

TME forecast. It is shown that the TME forecast outperforms

each single unbiased model for all seasons and forecast times

and that the TME RMSE is at least 10 % less of the RMSE

of the best unbiased model. Again, the TME outperforms the

IFS unbiased forecast for all seasons and forecast times.

The final point considered in this paper is the stability of

the TME evaluation with the length of the training period.

It is found that a training period of 36 days, i.e. 40 % of

the available data for each season, already gives a sizable

improvement to the TME RMSE. Nevertheless, the perfor-

mance difference between training performed with 40 and

80 % of the available data is significant for specific forecast-

ing times, showing the importance of using the largest possi-

ble data set for training.

The TME forecast quality may be further increased, at

least in principle, by making the TME weights a function

of the forecast time. Such a disaggregation would, however,

require a longer training data set in order to compute reliable

model–model and model–observation covariances. This gen-

eralization will hopefully be accomplished in the near future

when more years of forecast will be available.
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