Articles | Volume 34, issue 2
https://doi.org/10.5194/angeo-34-323-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-34-323-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Gravity-wave momentum fluxes in the mesosphere over Ascension Island (8° S, 14° W) and the anomalous zonal winds of the semi-annual oscillation in 2002
Centre for Space, Atmospheric and Oceanic Science, University of
Bath, Bath, UK
Corwin J. Wright
Centre for Space, Atmospheric and Oceanic Science, University of
Bath, Bath, UK
Robin N. Davis
Centre for Space, Atmospheric and Oceanic Science, University of
Bath, Bath, UK
Nicholas J. Mitchell
Centre for Space, Atmospheric and Oceanic Science, University of
Bath, Bath, UK
Related authors
Corwin J. Wright, Neil P. Hindley, Andrew C. Moss, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, https://doi.org/10.5194/amt-9-877-2016, 2016
Short summary
Short summary
Seven gravity-wave-resolving instruments (satellites, radiosondes and a meteor radar) are used to compare gravity-wave energy and vertical wavelength over the Southern Andes hotspot. Several conclusions are drawn, including that limb sounders and the radar show strong positive correlations. Radiosondes and AIRS weakly anticorrelate with other instruments and we see strong correlations with local stratospheric winds. Short-timescale variability is larger than the seasonal cycle.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Neil P. Hindley, Nathan D. Smith, Corwin J. Wright, D. Andrew S. Rees, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 2545–2565, https://doi.org/10.5194/amt-9-2545-2016, https://doi.org/10.5194/amt-9-2545-2016, 2016
Short summary
Short summary
Gravity waves are medium-sized momentum-carrying atmospheric waves that nearly all weather and climate models struggle to represent. Thus, the accurate global measurement of gravity-wave properties in the real atmosphere is of key importance. Here we use a new two-dimensional Stockwell transform (2-DST) method to measure key GW properties in 2-D satellite data. We show that our 2-DST approach greatly improves upon current methods, particularly if a new elliptical spectral window is used.
Corwin J. Wright, Neil P. Hindley, Andrew C. Moss, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, https://doi.org/10.5194/amt-9-877-2016, 2016
Short summary
Short summary
Seven gravity-wave-resolving instruments (satellites, radiosondes and a meteor radar) are used to compare gravity-wave energy and vertical wavelength over the Southern Andes hotspot. Several conclusions are drawn, including that limb sounders and the radar show strong positive correlations. Radiosondes and AIRS weakly anticorrelate with other instruments and we see strong correlations with local stratospheric winds. Short-timescale variability is larger than the seasonal cycle.
H. Iimura, D. C. Fritts, D. Janches, W. Singer, and N. J. Mitchell
Ann. Geophys., 33, 1349–1359, https://doi.org/10.5194/angeo-33-1349-2015, https://doi.org/10.5194/angeo-33-1349-2015, 2015
Short summary
Short summary
The quasi-5-day wave at mid- and high-latitudes in the mesosphere and lower-thermosphere was compared between the hemispheres using meteor radar horizontal wind measurements, spanning June 2010 to December 2012. Variances of the quasi-5-day wave showed a wave activity from July to August in both hemispheres and in April 2012 in the Northern Hemisphere and November 2012 in the Southern Hemisphere with unique characteristics at each site.
C. J. Wright, S. M. Osprey, and J. C. Gille
Atmos. Chem. Phys., 15, 8459–8477, https://doi.org/10.5194/acp-15-8459-2015, https://doi.org/10.5194/acp-15-8459-2015, 2015
Short summary
Short summary
Data from the HIRDLS instrument are used to study the numerical variability of gravity waves. Observed distributions are dominated by long-vertical-short-horizontal-wavelength waves, with a similar spectral form at all locations. We further divide our data into subspecies by wavelength, and investigate variation in these subspecies in time and space. We show that the variations associated with particular phenomena arise due to changes in specific parts of the spectrum.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
R. N. Davis, J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell
Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, https://doi.org/10.5194/acp-13-9543-2013, 2013
K. A. Day and N. J. Mitchell
Atmos. Chem. Phys., 13, 9515–9523, https://doi.org/10.5194/acp-13-9515-2013, https://doi.org/10.5194/acp-13-9515-2013, 2013
Short summary
Gravity waves are fundamental to the dynamics of the mesosphere. In some years very strong winds are observed in the first phase of the MSAO. It has been proposed that this is due to filtering of ascending gravity waves. We report the first gravity-wave momentum flux observations from the Ascension Island (8° S, 14° W) meteor radar and show that anomalous fluxes were observed during one such event in 2002. Analysis of the underlying winds suggests the wave-filtering hypothesis is not valid.
Gravity waves are fundamental to the dynamics of the mesosphere. In some years very strong winds...