Articles | Volume 34, issue 11
https://doi.org/10.5194/angeo-34-1019-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-34-1019-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Electrodynamic influence on the diurnal behaviour of neutral daytime airglow emissions
Deepak K. Karan
Physical Research Laboratory, Navrangpura, Ahmedabad, India
Indian Institute of Technology, Gandhinagar, Ahmedabad, India
Duggirala Pallamraju
CORRESPONDING AUTHOR
Physical Research Laboratory, Navrangpura, Ahmedabad, India
Kedar A. Phadke
Physical Research Laboratory, Navrangpura, Ahmedabad, India
Tatiparti Vijayalakshmi
Jawaharlal Nehru Technological University, Kukatpally, Hyderabad,
India
Tarun K. Pant
Space Physics Laboratory, Trivandrum, India
Shyamoli Mukherjee
Indian Institute of Geomagnetism, Navi Mumbai, India
Related authors
No articles found.
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nicholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys., 19, 5259–5267, https://doi.org/10.5194/acp-19-5259-2019, https://doi.org/10.5194/acp-19-5259-2019, 2019
Short summary
Short summary
Meteor radars are used to track and estimate the fading time of meteor trails. In this investigation, it is observed that the diffusion time estimated from such trail fading time is anomalously higher during noctilucent clouds (NLC) than that in its absence. We propose that NLC particles absorb background electrons and thus modify the background electrodynamics, leading to such an anomaly.
Ravindra P. Singh and Duggirala Pallamraju
Ann. Geophys., 35, 227–237, https://doi.org/10.5194/angeo-35-227-2017, https://doi.org/10.5194/angeo-35-227-2017, 2017
Short summary
Short summary
A near-infrared imaging spectrograph (NIRIS) has been developed in-house and is being operated from a low-latitude location, Gurushikhar, Mount Abu (24.6° N, 72.8° E), in India. The results presented in this study provide us with a comprehensive picture of mesospheric wave dynamics in terms of characterizing their response to various sources (solar and atmospheric) that give rise to the variability in the mesospheric intensities and temperatures.
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
Short summary
Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki and Hyderabad, India, are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. Interestingly, large vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12km altitude) and are thus identified to be the source for generating the observed gravity waves.
Short summary
Dayglow emission variability is expected to show a symmetric solar zenith-angle-dependent diurnal pattern as the production mechanisms are dominated by solar flux; however, this is not always the case. Our investigation reveals an imprint of equatorial electrodynamics on the neutral dayglow emission variability, as opposed to that of the solar zenith angle. This has implications in gaining a comprehensive understanding of the coupled nature of the ion-neutral behaviour in the upper atmosphere.
Dayglow emission variability is expected to show a symmetric solar zenith-angle-dependent...
Special issue