Articles | Volume 33, issue 3
https://doi.org/10.5194/angeo-33-363-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-33-363-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Long-term midlatitude mesopause region temperature trend deduced from quarter century (1990–2014) Na lidar observations
C.-Y. She
CORRESPONDING AUTHOR
Physics Department, Colorado State University, Fort Collins, CO 80523, USA
Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322, USA
D. A. Krueger
Physics Department, Colorado State University, Fort Collins, CO 80523, USA
Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322, USA
Related authors
No articles found.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Xuguang Cai, Tao Yuan, and Han-Li Liu
Ann. Geophys., 35, 181–188, https://doi.org/10.5194/angeo-35-181-2017, https://doi.org/10.5194/angeo-35-181-2017, 2017
Short summary
Short summary
Atmospheric gravity waves play highly important roles in the dynamic and chemical processes in the upper atmosphere. To assess their magnitude, continuous full diurnal cycle measurements of temperature perturbations are necessary. In this paper we have calculated the large-scale gravity wave modulations between 85 and 99 km altitude based on the measurements by a unique Na lidar at Utah State University in the month of September from 2011 to 2015. The waves with period of 3–5 h dominate.
Short summary
The unique, quarter-century-long Na lidar observations of midlatitude mesopause region temperatures are used to yield a cooling trend starting from an insignificant value of 0.64K/decade at 85km, increasing to a maximum of 2.8K/decade between 91 and 93km, and then decreasing to a warming trend above 103km. The long warming episode observed in the 1990s is found to mirror that of the global surface cooling after the Mt Pinatubo eruption.
The unique, quarter-century-long Na lidar observations of midlatitude mesopause region...