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Abstract. The long-term midlatitude temperature trend be-

tween 85 and 105 km is deduced from 25 years (March 1990–

December 2014) of Na Lidar observations. With a strong

warming episode in the 1990s, the time series was least-

square fitted to an 11-parameter nonlinear function. This

yields a cooling trend starting from an insignificant value of

0.64± 0.99 K decade−1 at 85 km, increasing to a maximum

of 2.8± 0.58 K decade−1 between 91 and 93 km, and then

decreasing to a warming trend above 103 km. The geographic

altitude dependence of the trend is in general agreement with

model predictions. To shed light on the nature of the warming

episode, we show that the recently reported prolonged global

surface temperature cooling after the Mt Pinatubo eruption

can also be very well represented by the same response func-

tion.

Keywords. Atmospheric composition and structure (middle

atmosphere – composition and chemistry; pressure density

and temperature; volcanic effects)

1 Introduction

Roble and Dickinson (1989) estimated the effects of hypo-

thetical future increases in greenhouse gas concentrations

on the global mean structure and predicted considerable

cooling in the mesosphere and thermosphere. About this

time, a number of long-term temperature observations in

the mesopause region (80–110 km) were initiated or reiniti-

ated at locations in the Northern Hemisphere with passive

OH emissions and/or active probes, such as Na lidar and

falling spheres. These observations and those in the South-

ern Hemisphere via OH emission, as well as the long series

of Russian rocket measurements and OH emissions between

about 1960 and 1995 over a wide range of latitudes, mea-

sured cooling trends in the mesopause region ranging from

0 to ∼ 10 K decade−1, suggesting that after 2 decades, the

observed trend remains uncertain (Beig, 2006). These obser-

vational temperature trend results were referenced in Table I

of She et al. (2009).

Based on the nocturnal lidar temperatures acquired

between March 1990 and December 2007 (data set

(90-07)), the same paper reported a linear long-term

trend, starting from an insignificant cooling trend of

0.28± 1.32 K decade−1 at 87 km, reaching a maximum value

of 1.55± 1.15 K decade−1 at 91 km, and turning into a warm-

ing trend above 102 km. The magnitude and altitude de-

pendences are consistent with the prediction of the Spectral

Mesosphere/Lower Thermosphere Model (SMLTM) (Ak-

maev et al., 2006) and of the Hamburg Model of the Neu-

tral and Ionized Atmosphere (HAMMONIA) (Schmidt et

al., 2006). Subsequent substantial reviews on thermospheric

trends, Lašttovička et al. (2012) and Cnossen (2012), in-

cluded some studies on the mesopause region neutral tem-

peratures. Recent observational reports on mesopause re-

gion temperature trends at specific altitudes include Offer-

mann et al. (2010) and Hall et al. (2012), based on ∼ 10-

year data sets. The former utilized the annual mean OH

imager temperatures between 1988 and 2008 over Wipper-

tal (51◦ N, 7◦ E) and reported a long-term trend at 87 km

of −2.3± 0.6 K decade−1 in temperatures; the latter uti-

lized meteor wind radar between October 2001 and Octo-

ber 2012 at Svalbard (78◦ N, 16◦ E) calibrated by satellite

measurements and reported a temperature trend at 90 km of

−4± 2 K decade−1.
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2 Na Lidar data sets and long-term regression analysis

The Colorado State University (CSU) Na lidar performed

nocturnal mesopause region temperature observations be-

tween March 1990 and March 2010 at Fort Collins, CO

(41◦ N, 105◦W). It employed a vertical beam between 1990

and 2001. Since 2002, the lidar has operated in 2- or 3-beam

geometry for simultaneous temperature and wind measure-

ments, leading to two or three mean temperatures at a given

altitude each night. The lidar was relocated to Utah State

University (USU) and has continued its regular observation

at Logan, Utah (42◦ N, 112◦W) since September 2010. Be-

cause of similar geographical coordinates, we combine the

data from both locations to form a data set from March 1990

to December 2014, denoted as (90-14_Avg). The extension

_Avg indicates that, unlike the data set employed in previ-

ous publications such as (90-07), which utilized temperatures

from the beam with the largest signal at 3.7 km vertical res-

olution, here we use the average of temperatures acquired

from two or three beams at 2.0 km vertical resolution.

As an overview, we plot the 25 years of nightly mean tem-

peratures at 86 km, which shows large annual and semian-

nual variation, and at 99 km, an altitude with minimal annual

and small semiannual variation (She and von Zahn, 1998),

respectively, in Fig. 1a and b. The data acquired at CSU

(March 1990–March 2010) is in black and that acquired at

USU (September 2010–December 2014) is in blue; apart

from a small data gap in 2010, the two sets of data blend

nicely. From Fig. 1a summer is about 60–80 K cooler than

winter at 86 km. At 99 km one can see long-term tempera-

ture variation. The 81-day averaged daily F10.7 solar flux

also plotted in the figure, in the red curve, shows that the

nightly mean temperatures track the variation in solar flux

after 1993. Note that there exists a warming episode after

the Mt Pinatubo Eruption (MPE), tMPE= 1.45 years, which

peaked in 1993 and mostly died away near the beginning of

1999 for altitudes between 88 and 102 km (Fig. 3a). Since the

warming episode is in our data, we must account for it in the

analysis, whether its causes are fully understood or not. As a

result, a nonlinear least-square regression analysis is required

for long-term study.

Following She et al. (2009), who performed regression

analysis on a shorter data set (90-07), a time series with

894 points, we express the nocturnal temperature at each al-

titude, T (z, t), of (90-14_Avg), a time series of 1200 points,

as

T (z, t)= Tfit(z, t)+ TRes(z, t), (1)

where,

Figure 1. Time series of nocturnal mean temperature recorded by

a Na lidar at 86 km (a) and at 99 km (b). Included in (b) is also

81-day F10.7 solar flux in red with the times for Mount Pinatubo

eruption (MPE), tMPE, and solar minima (Solar Min) marked. Data

(black circles) between March 1990 and March 2010 were ac-

quired at CSU (41◦ N, 105◦W), and those (blue circles) between

September 2010 and December 2014 were acquired at USU (42◦ N,

112◦W).

Tfit(z, t)= α(z)+A1(z)cos(2πt)

+B1(z)sin(2πt)+A2(z)cos(4πt)

+B2(z)sin(4πt)+β(z)t + γ (z)P (z, t)

+ δ(z)Q81(t);P (z, t)= 2/ {exp(t0− t)/t1

+exp(t − t0)/t2} ,

where t is time in years from 1 January 1990, α(z) is

independent of time, and the 4 A–B terms represent an-

nual and semiannual variations. The three long-term ef-

fects have the amplitudes β(z), γ (z), and δ(z), in this

model. The strong warming episode in our data, initially

attributed to the Mt Pinatubo eruption in June 1991 (She

et al., 1998), is represented by an amplitude γ (z) times

P(z, t)= 2/ {exp(t0− t)/t1+ exp(t − t0)/t2}, with parame-

ters t0(z), t1(z), and t2(z), for the delay, rise, and decay

time, respectively. The delay time here is relative to 1 Jan-

uary 1990, with the Mt Pinatubo eruption at 1.45 years (see

Fig. 1b). Other long-term responses include δ(z), the solar

response in K/SFU with Q81(t) being the 81-day averaged

F10.7 solar flux, and β(z), the linear trend in K years−1. The

residual from the best fit is TRes(z, t).
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Figure 2. Linear temperature trend from the quarter century data

set with 11- and 7-parameter analyses, respectively denoted as F-

11P(90-14_Avg) in black solid circles and F-7P(90-14_Avg) in

black open circles. Shown for comparison are those data published

based on an 18-year data set denoted as F-11P(90-07) in red solid

squares and F-7P(90-07) in open red squares.

Since all effects of comparable strengths must be included

in the time series for the nonlinear regression analysis (Ak-

maev, 2012) and the warming episode, solar activity and lin-

ear trend are not independent, the best fit of one term will

affect that of the other and they will depend upon the length

of the data set.

3 Temperature trend deduced from quarter

century lidar data

The long-term linear trend of the 11-parameter fit to the long

data set, F-11P(90-14_Avg), is shown in Fig. 2 along with

F-7P(90-14_Avg), deduced from the 7-parameter fit by set-

ting γ (z)= 0. Also shown are the published results from F-

11P(90-07) and F-7P(90-07) from the shorter data set from

March 1990 to 2007. As expected, the uncertainty from the

25-year data set is smaller than that from the 18-year data

set. The cooling trend in F-11P(90-14_Avg) starts from an

insignificant value of 0.64± 0.99 K decade−1 at 85 km, in-

creases to a maximum of 2.8± 0.58 K decade−1 between 91

and 93 km, and then gradually decreases to a warming trend

above 103 km. Turning from a cooling to a warming trend

above 100 to 120 km in geographic altitudes is the result of

the cooling and contraction of underlying atmosphere, the

lower thermosphere, the mesosphere, and the stratosphere; it

is predicted by models (Akmaev, 2012; Qian et al., 2013).

This does not occur in the seven-parameter analysis (see F-

7P(90-14_Avg) in Fig. 2). A similar difference between F-

11P(90-07) and F-7P(90-07) is also evident. To our knowl-

edge, metal resonance lidar is the only ground-based instru-

ment that covers the entire mesopause region, and ours is the

only Na lidar with a long enough data set to see this trend

reversal.

Compared to the trends deduced from the shorter data set,

(90-07), we note that the difference between F-7P(90-07) and

F-11P(90-07) is bigger than the difference between F-7P(90-

14_Avg) and F-11P(90-14_Avg) because the influence of

the warming episode on the temperature trend is reduced in

a longer data set. Statistically, the results from the longer

data set are more accurate; the mean uncertainty between

88 and 102 km is 0.6 and 1.3 K decade−1, respectively, for

F-11P(90-14_Avg) and the previously published F-11P(90-

07). However, below we investigate the discrepancy between

the two 11-parameter analyses, i.e., the 25-year data set has

a larger cooling trend by ∼ 1 K decade−1.

Since the three long-term effects with magnitudes

β(z),γ (z), and δ(z) are not independent in our analysis, we

can understand their mutual influences by realizing that, in

addition to the annual and semiannual variations, the ob-

served temperature at a given time is the sum of three con-

tributions β(z)t , γ (z)P (z, t), and δ(z)Q81(t). Because the

solar flux, Q81(t), is a quasi-periodic function with a period

of∼ 11 years, for data sets longer than 11 years, the dominat-

ing competition is between the warming episode and trend.

There is then a trade-off between the two best-fit values,

which depend upon the observed values in the entire time

series, i.e., data length. To see how this interdependence or

correlation affects the ∼ 1 K decade−1 discrepancy more ex-

plicitly, we recall that the proxy of the warming episode is the

function γ (z)P (z, t), which is shown in Fig. 3a for selected

altitudes. This function rises to a peak temperature (max tem-

perature), Tp, at the time tp = t0+`n(t2/t1)/[(1/t1)+(1/t2)].

Comparing tp and Tp in the 25- and 18-year-long data sets

reveals the difference of their warming episode affecting the

temperature trend. We plot these quantities as a function of

altitude in Fig. 3b for F-11P(90-14_Avg) and for F-11P(90-

07). Note that the altitude dependences for the two data sets

are similar. Between 88 and 102 km, where the lidar signal

is strong, we see little difference in tp but a systematic dif-

ference in Tp between the two data sets. Above 93 km, tp is

about constant, but Tp increases continuously. Note that the

peak warming (or maximum temperature response), Tp, from

the shorter data set is consistently higher by 0.5 to 2.5 K,

depending on altitude, implying that a larger share of ob-

served temperatures in the 1990s are attributed to the warm-

ing episode; this leads to a lower share for the trend assess-

ment and thus a smaller cooling trend. With the longer data

set, the reverse is true. Since the longer data set assesses the

lingering warming episode more fully, it can render better

judgment on the sharing between the two competitors; of

course, more data leads to statistical accuracy and thus to

a smaller uncertainty than the corresponding trend deduced

from the shorter data set as shown in Fig. 2. We thus ac-

cept F-11P(90-14_Avg) from 25 years of Na lidar observa-

tions, marked in solid black circles, as the deduced midlati-

tude mesopause region temperature trend.

www.ann-geophys.net/33/363/2015/ AnGeo Comm., 33, 363–369, 2015
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Figure 3. (a) Episodic warming in the 1990s at selected altitudes.

By the beginning of 1999, the warming episode is basically over

between 88 and 102 km. (b) The peak temperature (maximum tem-

perature response), Tp, and the time at which it occurs (or the time of

max response), tp, of warming episode deduced from 25-year data

set (90-14_Avg) is shown in black solid circles and open circles,

respectively. Results shown in red solid squares and open squares

were deduced from the 18-year data set (90-07).

4 Discussions

The warming episode in our data plays a critical role in the

temperature trend analysis based on our data sets. Further-

more, we assume a single temperature trend over 25 years in

analysis. We thus shall discuss these issues before the final

conclusion.

4.1 Mesopause warming and global surface cooling

in the 1990s

A significant 6 K warming in 1992 and 1993 between 60

and 80 km was reported by Rayleigh lidar observations in

southern France and attributed to the Mt Pinatubo eruption

(Keckhut et al., 1995). Our suggestion (She et al., 1998) that

the observed warming episode is one of the consequences of

the Mt Pinatubo eruption does not yet have a clear geophysi-

cal causal relationship. To our knowledge, there has been no

succinct explanation or model simulation published that re-

lates the direct radiative and/or indirect dynamical effects of

the Pinatubo eruption to the observed response in the meso-

sphere which lingered for ∼ 7 years at altitudes between 88

and 102 km as shown in Fig. 3a. There is, however, a compre-

hensive study of global mean surface temperature change in

response to volcanic eruption and ENSO (El Niño–Southern

Oscillation) events by Thompson et al. (2009). In response

to the Mt Pinatubo eruption, they found a peak cooling of

∼ 0.3 K about 1.5 years after the Pinatubo eruption, which,

remarkably, also lingered for∼ 7 years. Changing the sign of

their deduced global surface temperature response and mul-

tiplying it by a factor of 50, we obtain an episodic response

very similar to our mesopause region temperatures response.

Better yet, we find that the scaled global surface temperature

change, STR · (−50), deduced by Thompson et al. (2009)

can be fitted to γ (z)P (z, t) that was used to represent the

warming episode deduced from Na lidar observation. Next,

we compare the peak delay time and the response time con-

stant, tpd = tp−tMPE = tp−1.45, and τ = t1+t2, respectively,

for the two observed episodes that occurred in the same time

frame but ∼ 100 km apart in height.

Thompson et al. (2009) analyzed the surface tempera-

ture response to a volcano T (t) by using the forcing func-

tion F(t) in terms of a simple model system of exponen-

tial decaying memory with time constant τ0 = Cβ, where

C is the effective heat capacity of the global atmospheric–

oceanic mixed layer per unit area and β is the damping coeffi-

cient, a measure of the climate sensitivity. They deducedC =

4.8×107 J m−2 K−1, equivalent to the effect of the global at-

mosphere plus 9 m of the global oceanic mixed layer, and set

β to be 2/3 K (W m−2)−1 leading to a time constant for the

model system of τ0 = Cβ = 3.2×107 s= 1.01 years. Though

the system response to an impulse is a simple exponential

decaying function with a memory of ∼ 1 year, the forc-

ing function, with the Northern Hemisphere aerosol index

as a proxy lasted several years through the end of 1994.

The Aero Index (NH) · 100 is shown in Fig. 4a. Thomp-

son et al. (2009) produced a cumulative response with a

memory much longer than 1 year; the scaled response,

STR · (−50), is also shown. Since STR · (−50) has a shape

similar to the mesopause region warming episode, we fit it to

the function γ (0)P (0, t)+ background, giving γ = 13.0 K,

t0 = 2.42 years, t1 = 0.35 years, t2 = 1.70 years, and tp =

2.88 years, along with a background of 0.39 K, shown in

Fig. 4a as the blue curve, which is seen to match the scaled

surface temperature response very well. The time constant

and peak delay time for the global surface temperature re-

sponse are, respectively, τ = 2.05 years and tpd = 1.43 years.

Also in Fig. 4a is the warming response at 100 km in altitude

(with the same background of 0.39 K added), the best-fit pa-

rameters of which are γ = 11.4 K, t0 = 2.81, t1 = 0.20 years,

t2 = 1.60 years and tp = 3.17 years, or τ = 1.80 years and

tpd = 1.65 years. It is evident that both blue and red curves

have a similar shape, both spanning about 7 years, and thus

can be represented by the same function.
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Figure 4. (a) A comparison between 100 · stratospheric aerosol

(black) and the scaled global surface temperature response,

STR · (−50), in blue dots, from Thompson et al. (2009), along

with its best fit (blue curve) and episodic warming response

(EWR) in temperatures at 100 km (red curve). Both STR and

EWR are over at the beginning of 1999, ∼ 7.5 years after the

Mt Pinatubo eruption. (b) Deduced altitude-dependent time con-

stant of the response, τ , peak delay time, tpd, and mean age, tMA,

for the warming episodic function, respectively in open blue cir-

cles, open red circles, and solid black circles. Marked at the bot-

tom of the figure are the times for the surface temperature re-

sponse, respectively by blue and red crosses and the letter M. Data,

STR · (−50) in (a) is derived from http://www.atmos.colostate.edu/

~davet/ThompsonWallaceJonesKennedy/.

A more complete comparison between the warming

episode in the mesopause region temperatures and the global

surface temperature anomaly is shown in Fig. 4b, where

the warming episode response time constant τ and peak de-

lay time tpd are plotted as a function of altitude along with

these values for the surface temperature response at the bot-

tom of the figure. Averaged over the warming episode be-

tween 88 and 102 km, we find τ = 1.81± 0.42 years and

tpd = 1.82± 0.26 years, compared with the surface temper-

ature anomaly of τ = 2.05 years and tpd = 1.43 years. In ad-

dition, since the functional shape of both anomalies repre-

sents the distribution of the transit times of respective events,

the concept of the “age of air” (AOA) (Waugh and Hall,

2002) is useful. Though the AOA concept was mostly ap-

plied to the transport of species from the tropical troposphere

to the stratosphere, we use it here to describe the temporal

history of an episodic response to a strong impulsive forc-

ing. In fact, when area is normalized, the response of both

surface temperature and mesopause temperatures after the

Mt Pinatubo eruption is what is called the “age spectrum”

in the AOA literature. Though all information on the trans-

port process in question is contained in the age spectrum,

the mean age (or the first moment of the spectrum in refer-

ence to the time of the forcing impulse, i.e., tMPE here) of air,

tMA, may be used as a rough measure of the life of the pro-

cess. With the “age spectrum” at each altitude, we can com-

pute the associated mean age, tMA, also plotted in the figure,

along with an upper-case M for the surface temperature re-

sponse, tMA = 2.51 years. Averaged between 88 and 102 km,

we have tMA = 2.92± 0.33 years for the warming response.

All these time constants are deduced from observational

data. Assuming the Pinatubo aerosol reached the tropical

lower stratosphere in negligible time as Mt Pinatubo erupted,

for the warming episode, the mean age tMA is the time that

the direct plus indirect (dynamic and feedback) effect of

Pinatubo aerosol reaches the midlatitude mesopause region

from the tropic lower stratosphere. For global surface cool-

ing, the time tMA starts as the perturbation moves from the

tropical lower stratosphere down through the global tropo-

sphere to the global atmospheric–oceanic mixed layer and

the subsurface ocean (Thompson et al., 2009). We propose

no detailed mechanism, which may be complicated, that

leads to the mesopause warming after the Mt Pinatubo erup-

tion. We hope that similarities in the observed and deduced

response times between the volcanic eruption and the ob-

served episodes, along with treating the surface temperature

cooling with the same response function, will spur scien-

tists and modelers to ascertain the causal effects of these

strong episodic responses that occurred at the same time but

∼ 100 km apart in height.

4.2 A single linear trend or piecewise linear trends

The use of a single linear trend for a long data set is con-

sistent with the classic recommendation of the World Mete-

orological Organization (WMO), using ∼ 30 years or more

for analysis (Cnossen, 2012), and the practice of modelers,

typically using 20 or ∼ 50 years of simulation for trend stud-

ies (Akmaev et al., 2006; Garcia et al., 2007; Berger and

Lübken, 2011). It is nonetheless an assumption (Laštovička

et al., 2012). Since a primary cause of a long-term temper-

ature change is the anthropogenic emission of greenhouse

gases, a single linear trend over a 25-year span may not re-

flect the reality of the rate of greenhouse emission changes.

The emission of CO2 and CH4 into the atmosphere continues

to increase. Indeed, Emmert et al. (2012) recently reported

the observed increase of thermospheric CO2 concentration.

However, the loss rates (between 50 and 30 hPa) of the dra-

matic Antarctic ozone decrease (ozone hole, appeared in the

late 1970s) have remained stable since 2000 (Hassler et al.,

www.ann-geophys.net/33/363/2015/ AnGeo Comm., 33, 363–369, 2015
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2011). In the midlatitudes, the trend began to reverse in the

late 1990s (Akmaev, 2012; Qian et al., 2013), and it has been

stabilized in recent years at a level below that in the 1960s.

This recent O3 rate change should slow down the cooling rate

in the mesosphere and justify the use of a nonlinear (Keck-

hut et al., 2011) or piecewise linear trend for the regression

analysis (Laštovička et al., 2012). Indeed, in analyzing the

long-term variation in the reflection heights of radio waves

from 1961 to 2009 (Bremer and Berger, 2002) and investi-

gating temperature trends in the summer mesopause, Berger

and Lübken (2011) and Lübken et al. (2013) found it ap-

propriate to use three different linear trends with breaking

points in 1979 and 1997. One could then reanalyze our 25-

year data using piecewise trends in the future. In this case,

we would replace the term β(z)t in Eq. (1) by two differ-

ent linear trends joined at a breaking point. Again, because

the influences of solar flux, warming episode, and trends on

temperatures are not independent, all these terms, along with

the break point, if it is to be statistically determined, must

be included in Eq. (1) to compete for the same nightly mean

temperatures for regression analysis.

5 Conclusions

We have performed a regression analysis for the deduc-

tion of the mesopause region temperature trend based on

an unprecedented Na lidar data set between March 1990

and December 2014. The 81-day averaged F10.7 solar is

used as a proxy for solar activity, and a linear trend is as-

sumed. Owing to a strong warming episode in the 1990s,

the quarter century data set (90-14_Avg) is least-square fit-

ted to an 11-parameter nonlinear model. The temperature

trend shown in Fig. 2 starts from an insignificant value

of 0.64± 0.99 K decade−1 at 85 km, increases to a maxi-

mum of 2.8± 0.58 K decade−1 between 91 and 93 km, and

then gradually decreases to a warming trend above 103 km.

Compared to the trend from the shorter data set, (90-07),

which has a marginally significant cooling maximum of

1.55± 1.15 K decade−1 at 91 km (She et al., 2009), the quar-

ter century data set gives a statistically quite significant cool-

ing trend, larger by ∼ 1 K decade−1. The discrepancy is due

to the competition between warming episode and temper-

ature trend. Since the longer data set assesses the long-

lasting warming episode more fully, it leads to more signifi-

cant results. The mean uncertainty between 88 and 102 km

are 0.6 and 1.3 K decade−1, respectively, for the long and

shorter data sets. The altitude dependence from the two data

sets is quite similar, and their magnitudes are in the gen-

eral range predicted by models. The trends reported here are

−1.0± 1.0 K decade−1 at 87 km and −2.5± 0.5 K decade−1

at 90 km; they are consistent with the recently reported

trends: respectively, −2.3± 0.6 K decade−1 (Offermann et

al., 2010) and −4± 2 K decade−1 (Hall et al., 2012).

With regard to an interesting connection, we analyzed the

surface temperature response after the Mt Pinatubo eruption

reported by Thompson et al. (2009) with the same functional

dependence as that used for the observed warming episode in

the mesopause region. We determined the respective peak de-

lay time, tpd, and mean age, tMA, to be, respectively, 1.43 and

2.51 years for surface temperature and 1.82 and 2.92 years

for mesopause region warming. These similarities between

the global surface temperature anomaly and the mesopause

warming episode should hopefully spur community scien-

tists and modelers to figure out the causal effects of these

interesting phenomena.
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