Articles | Volume 32, issue 5
https://doi.org/10.5194/angeo-32-533-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-533-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The spatial distribution of region 2 field-aligned currents relative to subauroral polarization stream
Dept. of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, P. R. China
State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing, 100190, China
Helmholtz Centre Potsdam-GFZ, German Research Center for Geosciences, 14473 Potsdam, Germany
A. Ridley
Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI-48109, USA
Dept. of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, P. R. China
Related authors
Hui Wang, Kedeng Zhang, Zhichao Zheng, and Aaron James Ridley
Ann. Geophys., 36, 509–525, https://doi.org/10.5194/angeo-36-509-2018, https://doi.org/10.5194/angeo-36-509-2018, 2018
Short summary
Short summary
For subauroral polarization streams (SAPS) commencing at different universal
times (UT), the strongest westward neutral winds exhibit large variations
in amplitudes. The effect of a sine-wave oscillation of SAPS on the neutral wind also exhibits UT variations in association with the solar illumination. The reduction in the electron density and enhancement in the air mass density are strongest when the maximum solar illumination collocates with the SAPS.
Tao Huang, Hermann Lühr, and Hui Wang
Ann. Geophys., 35, 1249–1268, https://doi.org/10.5194/angeo-35-1249-2017, https://doi.org/10.5194/angeo-35-1249-2017, 2017
Short summary
Short summary
This is the first study considering ionospheric currents (both field-aligned current and Hall current) derived from high-resolution magnetic field data of the Swarm constellation in both hemispheres. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
T. Huang, H. Wang, J.-H. Shue, L. Cai, and G. Pi
Ann. Geophys., 33, 437–448, https://doi.org/10.5194/angeo-33-437-2015, https://doi.org/10.5194/angeo-33-437-2015, 2015
C. Xiong, H. Lühr, H. Wang, and M. G. Johnsen
Ann. Geophys., 32, 609–622, https://doi.org/10.5194/angeo-32-609-2014, https://doi.org/10.5194/angeo-32-609-2014, 2014
H. Wang and H. Lühr
Ann. Geophys., 31, 1521–1534, https://doi.org/10.5194/angeo-31-1521-2013, https://doi.org/10.5194/angeo-31-1521-2013, 2013
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-23, https://doi.org/10.5194/angeo-2023-23, 2023
Revised manuscript under review for ANGEO
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground based radar and satellite) in Brasil during 2006 were made in order to point out the advantage of each instrument for studies in the mesosphere and upper thermosphere. (i) For short period variations, the measurements of the satellite was more advantageous. (ii) The month climatology using the radar were more appropriate. (iii) If the long period (longer than few months), both instruments responded satisfactorily.
Hermann Lühr and Yun-Liang Zhou
Ann. Geophys., 38, 749–764, https://doi.org/10.5194/angeo-38-749-2020, https://doi.org/10.5194/angeo-38-749-2020, 2020
Short summary
Short summary
During magnetic storms the magnetic disturbance at low latitudes becomes asymmetric, enhanced in the evening sector and reduced around morning. This has been attributed to the asymmetric ring current. Here a new 3D current system is proposed for explaining the asymmetric signal. Anti-sunward net currents at high latitude are connected at their noon and night ends to field-aligned currents that lead the currents to the magnetopause on the dawn and dusk flanks where the current closure occurs.
Tarique A. Siddiqui, Astrid Maute, Nick Pedatella, Yosuke Yamazaki, Hermann Lühr, and Claudia Stolle
Ann. Geophys., 36, 1545–1562, https://doi.org/10.5194/angeo-36-1545-2018, https://doi.org/10.5194/angeo-36-1545-2018, 2018
Short summary
Short summary
Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric tides, and these variabilities can be comparable to a moderate geomagnetic storm. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. In this study, we use ground-magnetic measurements to investigate the semidiurnal solar and lunar tidal variabilities of the EEJ during SSWs.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Balázs Heilig and Hermann Lühr
Ann. Geophys., 36, 595–607, https://doi.org/10.5194/angeo-36-595-2018, https://doi.org/10.5194/angeo-36-595-2018, 2018
Short summary
Short summary
This paper presents a statistical study of the equatorward boundary of small-scale field-aligned currents (SSFACs) as observed by ESA's Swarm satellites and investigates the relation between this boundary and NASA’s Van Allen probe observed plasmapause (PP). It is found that the two boundaries are closely coincident in the midnight LT sector, where the new PP is formed. Our results point to the role of SSFACs in the creation of the PP and offer a unique tool to monitor PP dynamics.
Rafael L. A. Mesquita, John W. Meriwether, Jonathan J. Makela, Daniel J. Fisher, Brian J. Harding, Samuel C. Sanders, Fasil Tesema, and Aaron J. Ridley
Ann. Geophys., 36, 541–553, https://doi.org/10.5194/angeo-36-541-2018, https://doi.org/10.5194/angeo-36-541-2018, 2018
Short summary
Short summary
The midnight temperature maximum (MTM) is a phenomenon resulting from the constructive interference of the atmospheric tides. This paper brings the analysis of a long data set (846 nights) from the NATION network along with new analysis techniques (harmonic background removal and 2-D temperature interpolation) to detect the MTM in the mid-latitude range.
Hui Wang, Kedeng Zhang, Zhichao Zheng, and Aaron James Ridley
Ann. Geophys., 36, 509–525, https://doi.org/10.5194/angeo-36-509-2018, https://doi.org/10.5194/angeo-36-509-2018, 2018
Short summary
Short summary
For subauroral polarization streams (SAPS) commencing at different universal
times (UT), the strongest westward neutral winds exhibit large variations
in amplitudes. The effect of a sine-wave oscillation of SAPS on the neutral wind also exhibits UT variations in association with the solar illumination. The reduction in the electron density and enhancement in the air mass density are strongest when the maximum solar illumination collocates with the SAPS.
Tao Huang, Hermann Lühr, and Hui Wang
Ann. Geophys., 35, 1249–1268, https://doi.org/10.5194/angeo-35-1249-2017, https://doi.org/10.5194/angeo-35-1249-2017, 2017
Short summary
Short summary
This is the first study considering ionospheric currents (both field-aligned current and Hall current) derived from high-resolution magnetic field data of the Swarm constellation in both hemispheres. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
Hermann Lühr, Tao Huang, Simon Wing, Guram Kervalishvili, Jan Rauberg, and Haje Korth
Ann. Geophys., 34, 901–915, https://doi.org/10.5194/angeo-34-901-2016, https://doi.org/10.5194/angeo-34-901-2016, 2016
Short summary
Short summary
ESA's constellation mission Swarm makes it possible for the first time to determine field-aligned currents (FACs) reliably in the ionosphere. FACs are able to transport energy from the solar wind to the Earth and heat the upper atmosphere. Here we investigate FAC structures that have been missed by previous satellite missions. Most of them are found poleward of the northern light zone. The energy sources seem to be located on the nightside of Earth about 100 000 km away.
Davide Masutti, Günther March, Aaron J. Ridley, and Jan Thoemel
Ann. Geophys., 34, 725–736, https://doi.org/10.5194/angeo-34-725-2016, https://doi.org/10.5194/angeo-34-725-2016, 2016
Short summary
Short summary
The Global Ionosphere Thermosphere Model has been validated against flight data. The validation shows a linear dependency of the neutral density values with respect to the solar activity. In particular, the thermosphere model shows an over-predicting or under-predicting behaviour under high or low solar activity respectively. The reasons for such behaviour can be attributed to an erroneous implementation of the chemical processes or the gas transport properties in the model.
Yun-Liang Zhou, Li Wang, Chao Xiong, Hermann Lühr, and Shu-Ying Ma
Ann. Geophys., 34, 463–472, https://doi.org/10.5194/angeo-34-463-2016, https://doi.org/10.5194/angeo-34-463-2016, 2016
Short summary
Short summary
The solar activity dependence of nonmigrating tides in electron density at low and middle latitudes observed by CHAMP and GRACE are investigated. The absolute amplitudes of DE3 at low latitudes as well as DE1, D0 and DW2 at middle latitudes are highly related to the solar activity, while their relative amplitudes show little dependence on the solar activity. A clear modulation by the QBO is found in the relative amplitudes of DE3 at low latitudes.
J. Park, H. Lühr, C. Stolle, G. Malhotra, J. B. H. Baker, S. Buchert, and R. Gill
Ann. Geophys., 33, 829–835, https://doi.org/10.5194/angeo-33-829-2015, https://doi.org/10.5194/angeo-33-829-2015, 2015
Short summary
Short summary
Though high-latitude plasma convection has been monitored with a number of methods, more independent measurements are still warranted. In this study we introduce an automatic method to estimate along-track plasma drift velocity in the high-latitude ionosphere using the Swarm constellation. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network (SuperDARN) data. The method can be generalized to any satellite constellations in pearls-on-a-string configurations.
T. Huang, H. Wang, J.-H. Shue, L. Cai, and G. Pi
Ann. Geophys., 33, 437–448, https://doi.org/10.5194/angeo-33-437-2015, https://doi.org/10.5194/angeo-33-437-2015, 2015
T. A. Siddiqui, H. Lühr, C. Stolle, and J. Park
Ann. Geophys., 33, 235–243, https://doi.org/10.5194/angeo-33-235-2015, https://doi.org/10.5194/angeo-33-235-2015, 2015
Short summary
Short summary
This paper presents the long-term observations of lunar tidal signatures in the equatorial electrojet (EEJ) and their relation to stratospheric sudden warming (SSW) events. We propose an approach to estimate the occurrence of SSW events before their direct observations (before 1952) from the magnetic field observations at Huancayo.
C. Xiong, Y.-L. Zhou, H. Lühr, and S.-Y. Ma
Ann. Geophys., 33, 185–196, https://doi.org/10.5194/angeo-33-185-2015, https://doi.org/10.5194/angeo-33-185-2015, 2015
J. Park, H. Lühr, and M. Noja
Ann. Geophys., 33, 129–135, https://doi.org/10.5194/angeo-33-129-2015, https://doi.org/10.5194/angeo-33-129-2015, 2015
Short summary
Short summary
Total electron content (TEC) between low-Earth-orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain three-dimensional morphology of equatorial plasma bubbles (EPBs). TEC gradient observed along the LEO track is strongest when the corresponding GNSS satellite is located equatorward and westward of the LEO satellite. This anisotropy supports the idea that EPBs have three-dimensional shell structures.
C. R. Clauer, H. Kim, K. Deshpande, Z. Xu, D. Weimer, S. Musko, G. Crowley, C. Fish, R. Nealy, T. E. Humphreys, J. A. Bhatti, and A. J. Ridley
Geosci. Instrum. Method. Data Syst., 3, 211–227, https://doi.org/10.5194/gi-3-211-2014, https://doi.org/10.5194/gi-3-211-2014, 2014
K. Schlegel and H. Lühr
Hist. Geo Space. Sci., 5, 149–154, https://doi.org/10.5194/hgss-5-149-2014, https://doi.org/10.5194/hgss-5-149-2014, 2014
C. Xiong, H. Lühr, H. Wang, and M. G. Johnsen
Ann. Geophys., 32, 609–622, https://doi.org/10.5194/angeo-32-609-2014, https://doi.org/10.5194/angeo-32-609-2014, 2014
C. Xiong and H. Lühr
Ann. Geophys., 32, 623–631, https://doi.org/10.5194/angeo-32-623-2014, https://doi.org/10.5194/angeo-32-623-2014, 2014
Y. Deng and A. J. Ridley
Ann. Geophys., 32, 443–447, https://doi.org/10.5194/angeo-32-443-2014, https://doi.org/10.5194/angeo-32-443-2014, 2014
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 32, 249–261, https://doi.org/10.5194/angeo-32-249-2014, https://doi.org/10.5194/angeo-32-249-2014, 2014
H. Wang and H. Lühr
Ann. Geophys., 31, 1521–1534, https://doi.org/10.5194/angeo-31-1521-2013, https://doi.org/10.5194/angeo-31-1521-2013, 2013
J. Park, H. Lühr, and J. Rauberg
Ann. Geophys., 31, 1507–1520, https://doi.org/10.5194/angeo-31-1507-2013, https://doi.org/10.5194/angeo-31-1507-2013, 2013
H. Lühr and C. Manoj
Ann. Geophys., 31, 1315–1331, https://doi.org/10.5194/angeo-31-1315-2013, https://doi.org/10.5194/angeo-31-1315-2013, 2013
C. Xiong and H. Lühr
Ann. Geophys., 31, 1115–1130, https://doi.org/10.5194/angeo-31-1115-2013, https://doi.org/10.5194/angeo-31-1115-2013, 2013
J. Park and H. Lühr
Ann. Geophys., 31, 1035–1044, https://doi.org/10.5194/angeo-31-1035-2013, https://doi.org/10.5194/angeo-31-1035-2013, 2013
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 31, 541–554, https://doi.org/10.5194/angeo-31-541-2013, https://doi.org/10.5194/angeo-31-541-2013, 2013
B. Heilig and H. Lühr
Ann. Geophys., 31, 529–539, https://doi.org/10.5194/angeo-31-529-2013, https://doi.org/10.5194/angeo-31-529-2013, 2013
H. Lühr, F. Yin, and R. Bock
J. Sens. Sens. Syst., 2, 9–17, https://doi.org/10.5194/jsss-2-9-2013, https://doi.org/10.5194/jsss-2-9-2013, 2013
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013