Articles | Volume 32, issue 9
https://doi.org/10.5194/angeo-32-1163-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-1163-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
New results of structured VLF emissions observed simultaneously at two closely located stations near L ~ 5.5
J. Manninen
Sodankylä Geophysical Observatory, Sodankylä, Finland
N. G. Kleimenova
Institute of the Earth Physics RAS, Moscow, Russia
Yu. V. Fedorenko
Polar Geophysical Institute RAS, Apatity, Murmansk region, Russia
P. A. Bespalov
Institute of Applied Physics RAS, Nizhny Novgorod, Russia
T. Turunen
Sodankylä Geophysical Observatory, Sodankylä, Finland
Related authors
Jyrki Manninen, Natalia Kleimenova, Tauno Turunen, and Liudmila Gromova
Ann. Geophys., 36, 915–923, https://doi.org/10.5194/angeo-36-915-2018, https://doi.org/10.5194/angeo-36-915-2018, 2018
Short summary
Short summary
We reveal previously unknown quasi-periodic (QP) VLF emissions at the unusually high-frequency band of ~ 7–11 kHz by applying the digital filtering of strong sferics to the ground-based VLF data recorded at Kannuslehto station (KAN). In one event, the spectral–temporal forms of the emissions looked like a series of giant
bullets, with very abrupt cessation. In the second event, the modulation period was about 3 min under the absence of the simultaneous geomagnetic pulsations.
J. Manninen, N. G. Kleimenova, A. Kozlovsky, I. A. Kornilov, L. I. Gromova, Y. V. Fedorenko, and T. Turunen
Ann. Geophys., 33, 991–995, https://doi.org/10.5194/angeo-33-991-2015, https://doi.org/10.5194/angeo-33-991-2015, 2015
Short summary
Short summary
A non-typical 1-4 kHz hiss was studied. It shows a sequence of separated noise bursts with strange “mushroom-like” shapes in the frequency-time domain, each lasting several minutes. This sequence could be a result of the modulation of the VLF hiss electron-cyclotron instability by Pc5 geomagnetic pulsations. This strange “mushroom-like” shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF-VLF wave interaction and the ionosphere waveguide propagation.
J. Manninen, N. G. Kleimenova, and O. V. Kozyreva
Ann. Geophys., 30, 1655–1660, https://doi.org/10.5194/angeo-30-1655-2012, https://doi.org/10.5194/angeo-30-1655-2012, 2012
Vera G. Mizonova and Peter A. Bespalov
Ann. Geophys., 39, 479–486, https://doi.org/10.5194/angeo-39-479-2021, https://doi.org/10.5194/angeo-39-479-2021, 2021
Short summary
Short summary
The paper discusses the excitation of monochromatic ELF/VLF electromagnetic waves produced by HF heating facility currents in the nighttime ionosphere. The ground-based magnetic field is predominantly located under the source, and the wave has right-hand polarization typical for a whistler but left-hand polarization at large distances from the source. About half of the source energy propagates upward, and approximately 20 % propagates to the Earth–ionosphere waveguide.
Peter A. Bespalov and Olga N. Savina
Ann. Geophys., 37, 819–824, https://doi.org/10.5194/angeo-37-819-2019, https://doi.org/10.5194/angeo-37-819-2019, 2019
Short summary
Short summary
The paper discusses a problem concerned with the excitation of chorus with small wave normal angles along the external magnetic field in the magnetosphere. We examine the realisation of the beam pulse amplifier mechanism of chorus excitation without strong anisotropy of the plasma particle distribution function in the density ducts with refractive reflection. It is shown that in the ducts, discrete spectral elements of chorus can be excited at close to half of the electron cyclotron frequency.
Peter Bespalov and Olga Savina
Ann. Geophys., 36, 1201–1206, https://doi.org/10.5194/angeo-36-1201-2018, https://doi.org/10.5194/angeo-36-1201-2018, 2018
Short summary
Short summary
A VLF chorus is a very intense electromagnetic plasma wave that is naturally excited as a succession of discrete emissions near the magnetic equatorial plane outside the plasmasphere. We introduce a mechanism of chorus excitation under conditions when known mechanisms become ineffective. This kind of excitation is related to the amplification of short electromagnetic pulses from the noise level even in a stable plasma. Obtained results can explain some important features of the chorus emissions.
Jyrki Manninen, Natalia Kleimenova, Tauno Turunen, and Liudmila Gromova
Ann. Geophys., 36, 915–923, https://doi.org/10.5194/angeo-36-915-2018, https://doi.org/10.5194/angeo-36-915-2018, 2018
Short summary
Short summary
We reveal previously unknown quasi-periodic (QP) VLF emissions at the unusually high-frequency band of ~ 7–11 kHz by applying the digital filtering of strong sferics to the ground-based VLF data recorded at Kannuslehto station (KAN). In one event, the spectral–temporal forms of the emissions looked like a series of giant
bullets, with very abrupt cessation. In the second event, the modulation period was about 3 min under the absence of the simultaneous geomagnetic pulsations.
Peter Bespalov and Vera Mizonova
Ann. Geophys., 35, 671–675, https://doi.org/10.5194/angeo-35-671-2017, https://doi.org/10.5194/angeo-35-671-2017, 2017
Short summary
Short summary
The problems of reflection and transmission of a whistler wave incident in the nighttime ionosphere from above are considered. Numerical solutions of the wave equations for a typical condition of the lower ionosphere are found. The energy reflection coefficient and horizontal wave magnetic field on the ground surface are calculated. The obtained results are important for analysis of the ELF–VLF emission phenomena observed from both the satellites and the ground-based observatories.
Peter Bespalov and Olga Savina
Ann. Geophys., 35, 133–138, https://doi.org/10.5194/angeo-35-133-2017, https://doi.org/10.5194/angeo-35-133-2017, 2017
Short summary
Short summary
We propose a simple explanation of the prolonged existence of pancake-like electron velocity distributions in the radiation belts. The pancake-like distribution function is characterized by a longitudinal particle velocity (along the magnetic field) of the order of the thermal velocity of the background plasma. The parameters of the tablet-like distribution function are refined. The stability of these distributions is examined.
K. Kauristie, M. V. Uspensky, N. G. Kleimenova, O. V. Kozyreva, M. M. J. L. Van De Kamp, S. V. Dubyagin, and S. Massetti
Ann. Geophys., 34, 379–392, https://doi.org/10.5194/angeo-34-379-2016, https://doi.org/10.5194/angeo-34-379-2016, 2016
Short summary
Short summary
This study presents some example events in which sudden changes in the auroral activity at midnight sector seem to have an impact on the intensity of morning-sector magnetic pulsations. Mechanisms which could link these two separate regions are discussed in the paper. Sudden changes in the solar wind properties and fast westward-propagating electrons are suggested to explain the coupling between midnight-sector and morning-sector phenomena.
Carl-Fredrik Enell, Alexander Kozlovsky, Tauno Turunen, Thomas Ulich, Sirkku Välitalo, Carlo Scotto, and Michael Pezzopane
Geosci. Instrum. Method. Data Syst., 5, 53–64, https://doi.org/10.5194/gi-5-53-2016, https://doi.org/10.5194/gi-5-53-2016, 2016
Short summary
Short summary
Ionograms from the Sodankylä Geophysical Observatory ionosonde (station SO166) were scaled automatically with the Autoscala software during a test period. The results were compared with manually scaled ionospheric parameters. In general, the F-layer parameters were found to agree well, whereas high-latitude phenomena like auroral E layers were often misidentified.
J. Manninen, N. G. Kleimenova, A. Kozlovsky, I. A. Kornilov, L. I. Gromova, Y. V. Fedorenko, and T. Turunen
Ann. Geophys., 33, 991–995, https://doi.org/10.5194/angeo-33-991-2015, https://doi.org/10.5194/angeo-33-991-2015, 2015
Short summary
Short summary
A non-typical 1-4 kHz hiss was studied. It shows a sequence of separated noise bursts with strange “mushroom-like” shapes in the frequency-time domain, each lasting several minutes. This sequence could be a result of the modulation of the VLF hiss electron-cyclotron instability by Pc5 geomagnetic pulsations. This strange “mushroom-like” shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF-VLF wave interaction and the ionosphere waveguide propagation.
J. Manninen, N. G. Kleimenova, and O. V. Kozyreva
Ann. Geophys., 30, 1655–1660, https://doi.org/10.5194/angeo-30-1655-2012, https://doi.org/10.5194/angeo-30-1655-2012, 2012