Articles | Volume 31, issue 5
https://doi.org/10.5194/angeo-31-859-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-859-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-precision measurement of satellite range and velocity using the EISCAT radar
J. Markkanen
EISCAT Scientific Association, Tähteläntie 54 B, 99600 Sodankylä, Finland
T. Nygrén
Department of Physics, University of Oulu, P.O. Box 3000, 90014, Finland
M. Markkanen
Eigenor Ltd, Lompolontie 1, 99600 Sodankylä, Finland
M. Voiculescu
Department of Physics, Faculty of Sciences, University "Dunărea de Jos" Galaţi, St. Domnească, No. 47, 800008 Galaţi, Romania
Department of Physics, University of Oulu, P.O. Box 3000, 90014, Finland
Related authors
No articles found.
Petru Cosmin Vaideanu, Mihai Dima, Monica Ionita, and Mirela Voiculescu
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-75, https://doi.org/10.5194/esd-2021-75, 2021
Revised manuscript not accepted
Short summary
Short summary
Observing clouds and their properties is not straightforward, however, these are important for reducing climate models uncertainties. Ground-based observations are spatially limited while satellite data are accompanied by various artefacts. In this paper, we use corrected observational and state-of-the-art reanalysis cloud data to show that the recent evolution of total cloud cover on a global scale is linked to the Eastern Pacific and the Central Pacific El Niño–Southern Oscillation.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
L. Sfîcă, M. Voiculescu, and R. Huth
Ann. Geophys., 33, 207–215, https://doi.org/10.5194/angeo-33-207-2015, https://doi.org/10.5194/angeo-33-207-2015, 2015
Short summary
Short summary
A possible link between solar activity and the atmospheric pressure fields is investigated using NCEP/NCAR data at ground level and at 500hPa, in the Northern Hemisphere for the cold season, with a focus on the North Atlantic centres of action. The Icelandic low seems to be most sensitive to the solar signal by moving towards north and by confining its activity area during months with high solar activity.
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013