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Abstract. This paper is a continuation of an earlier work by
Nygrén et al.(2012), where the velocity of a hard target was
determined from a set of echo pulses reflected by the target
flying through the radar beam. Here the method is extended
to include the determination of range at a high accuracy. The
method is as follows. First, the flight time of the pulse from
the transmitter to the target is determined at an accuracy es-
sentially better than the accuracy given by the sampling in-
terval. This method makes use of the fact that the receiver fil-
tering creates slopes at the phase flips of the phase modulated
echo pulse. A precise flight time is found by investigating the
echo amplitude within this slope. A value of velocity is calcu-
lated from each echo pulse as explained in the earlier paper.
Next, the ranges together with velocities from a single beam
pass are combined to a measurement vector for a linear in-
version problem. The solution of the inversion problem gives
the time-dependent range and velocity from the time inter-
val of satellite flight through the radar beam. The method is
demonstrated using the EISCAT (European Incoherent Scat-
ter) UHF radar and radio pulses reflected by a satellite. The
achieved standard deviations of range are about 5–50 cm and
those of velocity are about 3–25 mm s−1.

Keywords. Radio science (remote sensing; signal process-
ing)

1 Introduction

Radar is a tool widely used in observing objects like meteors
and space debris particles (Goldstein et al., 1998; Baggaley,
2000; Janches et al., 2000, 2002; Foster et al., 2005; Markka-
nen et al., 2005). Satellite orbits can be determined very
accurately with systems applying lasers, altimeters, ground
beacons, as well as ground-based or satellite-borne GPS re-
ceivers (Vonbun et al., 1978; Wakker et al., 1985; Tapley et
al., 1994; Nouël et al., 1994; Bock et al., 2002; Romero et
al., 2002; Visser et al., 2009).

The goal of the present work is to use a radar to facilitate
accurate satellite orbit determination. When a radar echo sig-
nal is sampled, the most straightforward approach for mea-
suring the range would be to recognise the front end of the
received echo pulse from the first sample rising above the
noise level. Then the range can be calculated from the time
difference between transmission and reception. This would
lead to an accuracy determined by the sampling interval. A
sampling interval of 1 µs, for instance, would lead to a range
resolution of 150 m only, and therefore more sophisticated
methods are needed for better resolutions.

An elementary way of measuring the velocity would be to
observe two ranges from two subsequent pulses and to divide
the range difference by the time between the two transmis-
sions. A better approach is to calculate the Doppler shift of
the echo pulse by fast Fourier transform. However, for very
high accuracies, Fourier transforms with impractical lengths
are required. Thus there is a need of finding a way of calculat-
ing the Doppler shift more accurately than Fourier transform
can do in practice.
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Nygrén et al. (2012; Paper I from now on) present a numer-
ical method for determining the target velocity at a high ac-
curacy. It consists of two parts. First, the Doppler shift of an
individual pulse is found very accurately from the asymme-
try of the amplitude peak given by a Fourier transform. The
second stage is to adopt a time-dependent velocity model,
which allows linear variation of the time derivative of veloc-
ity. The model is applied by fitting it to velocities given by
subsequent echo pulses from the satellite passing the radar
beam. When this method was applied to observations made
using the EISCAT (European Incoherent Scatter) UHF radar,
the best standard deviations of the velocity of a satellite pass-
ing the radar beam were of the order of a few millimetres per
second.

The present paper puts forth a method of determining the
range and beam-aligned velocity of a satellite from phase-
coded radar pulses. The downconversion and scaling of the
transmitted and received pulses is first explained and then a
method is introduced to determine the time delays between
respective phase shifts of the transmitted and received pulses.
These delays are used to obtain range measurements with re-
spective standard deviations, one observation for each trans-
mitted pulse.

Each pulse also gives a velocity measurement by means of
the method given in Paper I. Range and velocity observations
from a single beam pass are collected together and used as
measurements in an inversion problem. The inversion prob-
lem makes use of a time-dependent range model which is
essentially a Taylor’s expansion of range up to the third time
derivative. The constants in this expansion are the unknowns
in the inversion problem. The solution of this problem gives
the best values of these constants with standard deviations.
Once the constants are known, the time variation of range
and velocity can be calculated.

The method is tested with EUMETSAT’S METOP-A (Eu-
ropean Organisation for the Exploitation of Meteorological
Satellites - Meteorological Operation A) satellite and the
EISCAT UHF radar (Folkestad et al., 1983) using alternat-
ing codes (Lehtinen and Ḧaggstr̈om, 1981). Some checking
of the results is made by solving two separate smaller in-
version programs. One of them uses only range observations
and the other velocity observations as measurements. A good
agreement is found between the results from these two inde-
pendent sets of measurements.

2 Processing the radar pulses

Data given by the EISCAT UHF radar (Folkestad et al., 1983)
are used in this paper to observe a satellite flying through
the radar beam. The pulse length is 1920 µs and the signal is
sampled at 1 µs intervals as explained in Paper I. A 32-bit al-
ternating code is used in the experiment, and the bit length is
60 µs. Each IPP (inter pulse period) is sampled continuously

starting from the very beginning. Hence the transmitted wave
form is also recorded.

The transmission and echo signals are used for determin-
ing the time delay from transmission to reception at a high
accuracy. In principle, this could be done using the time dif-
ferences of the front or back ends of the transmitted and the
received pulse. It turns out, however, that the ends of the
transmitted and received pulse are polluted by small distur-
bances. This problem was detected by our analysis and it was
tracked down to experiment design, where the initial and final
phase flips where performed too near the pulse-on and pulse-
off times. The problem can be corrected and it should not ap-
pear in the future. The available data can still be used, since
alternating codes contain several phase flips inside the mod-
ulation patterns when no power switch on or off takes place.
These phase flips can be used instead of front or rear ends of
the pulse. Times of each phase flip in the transmission and
the corresponding flip in the radar echo give a single range
estimate. Thus several range estimates are obtained from a
single phase coded transmitted pulse, and this also improves
the accuracy of the range determination.

In order to measure the time differences between the phase
flips of the echo pulses and the transmitted ones, one has to
convert both of them to zero frequency and to scale the am-
plitudes to the same values. The transmission also contains
notable distortions of the ideal alternating code modulation
envelopes, and they should be removed. There is an approx-
imately linear amplitude droop of a few per cent during the
length of the pulse. In addition, there is a phase droop which
is equivalent to a Doppler shift. To correct these distortions,
the transmitted waveform after downconversion to zero fre-
quency is modelled by

z(t) = A(1− βt)E(t)exp(2πiνpt) + ε(t). (1)

HereA is a constant complex amplitude,β is a real constant
modelling the amplitude droop,νp is a Doppler frequency
modelling the phase droop,E(t) is the ideal filtered modu-
lation envelope of the alternating code andε(t) is noise. The
values of the modulation envelope are+1 or −1 according
to the alternating code pattern, except close to the phase flips
where the filtered envelope varies smoothly.

After the transmitted signal is downconverted to zero
frequency and sampled at constant sampling intervals, the
model parametersA, β andνp are determined by nonlinear
least squares fitting. A few sample points at the smooth tran-
sient near each phase flip are omitted in this fit. When the
parameter values are known, the real-valued ideal modula-
tion envelopeE(t) is obtained from Eq. (1) by division. An
example of the result is shown in the top panel in Fig. 1.

The received pulse consists of the same modulation enve-
lope as the transmitted one. It also contains the same am-
plitude and phase droops, but its complex amplitude is dif-
ferent. In addition, it has experienced a Doppler shift. The
Doppler frequency is determined in the manner explained
in Paper I. Using this frequency, the received signal is first

Ann. Geophys., 31, 859–870, 2013 www.ann-geophys.net/31/859/2013/
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Fig. 1. Top panel: An example of a sampled transmitted pulse after downconversion to zero frequency, scaling

and conversion to a real signal. Bottom panel: Same for an echo signal. The open dots indicate samples at the

phase flips.
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Fig. 2. Top panel: Receiver impulse response. Bottom panels: Step responses for positive and negative phase

flips. For dots, see the text.

19

Fig. 1.Top panel: an example of a sampled transmitted pulse after downconversion to zero frequency, scaling and conversion to a real signal.
Bottom panel: same as above for an echo signal. The open dots indicate samples at the phase flips.

downconverted to zero frequency. Then the amplitude and
phase droops are removed using the parameter values deter-
mined from the transmitted pulse. Finally a real-valued echo
pulse is obtained by dividing the echo signal by a complex
amplitude determined from the echo pulse itself. This is ob-
tained by averaging 40 samples (the bit length is 60 samples),
taken from a region where the modulation envelope does not
change its sign and which lies outside of any region of phase
flip. An example of the resulting echo pulse is shown in the
bottom panel in Fig. 1.

One should notice here that the amplitude and phase droop
corrections are determined very accurately from the transmit-
ted pulse with a high SNR (signal to noise ratio). When the
same parameters are used in correcting the echo pulse, a sim-
ilar accuracy is achieved, although the SNR of the echo pulse
is essentially lower. Another point to notice is that the length
of the echo pulse is also changed due to the Doppler effect.
There is no need to investigate this, however, because the
analysis will deal with the time differences of the correspond-
ing phase flips in the echo pulses and transmitted pulses.

The receiver works as a filter and its filtering properties
can be expressed in terms of a single impulse response. Pre-
cise measurements of the receiver impulse response are not
available but the filter bandwidth gives the length of the im-
pulse response. Here a model is used which consists of a box-
car impulse response of the analogue receiver with a length
of 0.3 µs and a triangular impulse response of the digital re-
ceiver with a length of 1.2 µs. The total impulse response is

the convolution of these two responses and it is shown in the
top panel in Fig. 2.

Filtering the radar signal means that the output signal of
the receiver is the convolution of the impulse response and
the unfiltered signal. When this is applied to the phase flips,
the resulting phase shifts are not sharp, but they consist
of slopes. These slopes are convolutions of the impulse re-
sponse and a step function, i.e. they are step responses of the
filter. The applied sampling interval is such that it is slightly
shorter than the length of the impulse response in such a
way that at least one but never more than two of the sam-
ples lie within the slope. These are called slope points here.
The slope points are shown by dots in Fig. 1.

The theoretical shapes of the filtered phase shifts are
shown in the bottom panel in Fig. 2; the panel on the left
indicates amplitude shift from−1 to +1 and on the right a
shift back to−1. When the sampling interval is 1 µs and the
time between subsequent phase flips is a multiple of 60 µs,
the slope points at these two types of phase shifts should lie
symmetrically around zero. Slope points can be located any-
where within the slopes. If the slope point for one phase shift
happens to be the black dot on the left-hand panel, the cor-
responding slope point for the opposite phase shift should be
the black dot on the right-hand panel. The same applies to
the pair of open dots.

The top panel in Fig. 1 reveals that the slope points are
not actually located symmetrically as expected. Inspection
of the signal path at the radar site with an oscilloscope
has shown that the asymmetry is most probably due to an

www.ann-geophys.net/31/859/2013/ Ann. Geophys., 31, 859–870, 2013
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Fig. 2. Top panel: Receiver impulse response. Bottom panels: Step responses for positive and negative phase
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Fig. 2.Top panel: receiver impulse response. Bottom panels: step responses for positive and negative phase flips. For dots, see the text.

actual (previously ignored) hardware timing difference be-
tween generation of the up and down phase shifts. Even the
shapes of the two slopes appear to be slightly different. In
this paper, we nevertheless assume the ideal shapes shown
in Fig. 2, but acknowledge that this is a possible source of
a small second-order error in range (first-order timing dis-
tortions cancel out, because approximately the same error
would be present both in transmission and in reception).

3 Ranges from individual radar pulses

The times of phase flips can now be determined using the step
responses. Assuming that the time dependence of the step re-
sponse isp(t) and the signal value at a given observed slope
point at a timets is ss, the true time of phase flip ists− τs,
whereτs obeysss = p(τs). This can be verified using Fig. 2.
If the slope point of a given phase flip has an amplitude equal
to that of the filled dot in the bottom left panel in Fig. 2, the
true time of the phase flip is 0.5 µs earlier than the time of the
observed slope point.

In addition to possible systematic errors caused, e.g. by an
inaccuracy in the slope-shape model, there are also statistical
errors which are caused by noise. In order to calculate the
statistical error ofτs, both the delayτ and the signal values
are treated as random variables. Then

s = p(τ) + ε, (2)

whereε is due to Gaussian noise with zero mean. In terms of
the SNR of the complex signal, the standard deviation ofε is

σε =
1

(2× SNR)1/2
. (3)

Whenτ is fixed,s obeys the conditional probability density
D(s|τ). This is proportional to the conditional probability
densityD(τ |s), and therefore

D(τ |s) ∝ D(s|τ) ∝ exp

{
−

[p(τ) − s]2

2σ 2
ε

}
. (4)

The Taylor expansion ofp(τ) aroundτs is

p(τ) = p(τs)+

(
dp

dτ

)
τs

(τ −τs)+
1

2

(
d2p

dτ2

)
τs

(τ −τs)
2
+. . .

(5)

At high values of SNR,σε is small so thatD(τ |s) makes a
narrow peak. Then one can approximate the density function
in Eq. (4) using the two first terms in the Taylor expansion.
Sincep is the convolution of the impulse responseh and a
step function with a step size of 2,(

dp

dτ

)
τs

= 2h(τs). (6)

Using this result and noticing thatp(τs) = ss, the conditional
density ofτ at s = ss is

D(τ |ss) ∝ exp

{
−

(τ − τs)
2

2σ 2
τ

}
, (7)

Ann. Geophys., 31, 859–870, 2013 www.ann-geophys.net/31/859/2013/
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Fig. 3. Top panel: linear fit of ranges from the phase flips of a single echo pulse. The dots indicate ranges calculated from individual phase
flips and the error bars are their standard deviations. The time of reflection of flipn = 10 is t10 = 5433.801 µs and the corresponding fitted
range isr10 = 1315.4058 km. Bottom panel: standard deviations of fitted ranges.

where the standard deviation ofτ is

στ =
σε

2h(τs)
=

1

2h(τs)
√

2× SNR
. (8)

The last expression in this equation is obtained using Eq. (3).
This result gives an estimate for the the standard deviation of
the time of the phase flip, when the signal value at the slope
point is measured. The standard deviation is determined by
two factors, the SNR and the value of the impulse response
at the time corresponding to the time at the slope point.

Equation (8) shows that, for a given SNR, the determina-
tion of τ is most accurate if the time of the slope point corre-
sponds to the maximum value of the impulse response. This,
on the other hand, corresponds to the time of the steepest
slope of the step response. This is also otherwise an obvi-
ous result, because varyings causes smallest variation inτ at
the point wheres(τ ) has its steepest slope. In this work the
amplitudes of the applied slope points always lie within the
limits ±0.7.

Alternating codes consist of a cycle of pulses with dif-
ferent modulation patterns, and the number of phase flips in
individual pulses is variable. When the pulse front and rear
ends are excluded, the number of phase flips in the applied
32-bit code varies between 10 and 21. The times of the phase
flips are determined both for the transmitter envelope and for
the echo pulse in the manner described above.

If the calculated time of phase flipn is t
(TX)
n for the trans-

mitted pulse andt (RX)
n for the echo pulse, the time delay of

the received phase flip from the transmitted one is

1tn = t (RX)
n − t (TX)

n (9)

and the range of the satellite is

Rn =
c

2
1tn. (10)

The time of the reflection of the phase flip at the satellite is

tn =
t
(TX)
n + t

(RX)
n

2
. (11)

Due to the high satellite velocity, the time difference be-
tween the received and transmitted phase flips varies from
flip to flip. For instance, if the beam-aligned satellite velocity
is 4000 m s−1 (see Paper I), the satellite range varies nearly
by 8 m during the period of pulse reflection. This value is so
large that it should be taken into account in the analysis. Still
the pulse is so short that it is sufficient to assume the satellite
velocity to be constant during the period of pulse reflection.
Then one can make a linear fit to the ranges calculated from
the phase flips of a single echo.

Fitting the calculated ranges is demonstrated in the top
panel in Fig. 3. Here the modulation consists of 20 phase flips
and the dots indicate the ranges calculated using Eq. (9). In
order to show the variation, the plotted quantity isRn − r10.
Here Rn is the range calculated from the individual phase
flips according to Eq. (10) andr10 = 1315405.8 m is the fit-
ted range at the reflection time of the phase flipn = 10, which

www.ann-geophys.net/31/859/2013/ Ann. Geophys., 31, 859–870, 2013
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is equal tot10 = 5433.801 µs. The error bars in the top panel
in Fig. 3 are standard deviations calculated using Eq. (8). The
dots without error bars are points which do not obey the crite-
rion −0.7 < s < 0.7 and they are not used in the fitting. The
continuous line is the result of a weighted least squares linear
fit to the other points.

The bottom panel in Fig. 3 shows the standard deviations
of the fitted ranges. It turns out that all standard deviations
are below 1 m, but the the smallest one is slightly higher
than 50 cm and it is obtained forn = 10. The corresponding
range and its standard deviation will be used in calculating
the range variation of the satellite during the beam pass.

4 Formulation of the inverse problem

When the target passes through the radar beam, a few hun-
dred echo pulses are typically received. Range and velocity
with respective standard deviations can be determined from
each pulse separately; range as explained in Sect. 3 and ve-
locity as explained in Paper I. In Paper I, a time-dependent
velocity model was fitted to the observed velocities. Here the
principle is expanded to a model of time varying range. In
order to achieve the best possible accuracy, the range is fitted
simultaneously to the observed ranges and velocities. This
can be done using the formalism described below.

The time behaviour of range is taken to obey a model

r(t) = r0 + v0t +
1

2
a0t

2
+

1

6
ȧt3. (12)

This model implies that the beam-aligned velocity has a time
dependence

v(t) = v0 + a0t +
1

2
ȧt2, (13)

and its time derivative is

a(t) = a0 + ȧt. (14)

Althougha(t) is not the beam-aligned component of the tar-
get acceleration, but only the second time derivative of range,
it will be called acceleration here.

The task is to determine the best values of the parameters
r0, v0, a0 andȧ and their standard deviations.

The number of pulses used in range determination is de-
noted bynr. Results like those in Fig. 3 are used for obtaining
ranges at certain instants of time. The range with the smallest
standard deviation and the time of the corresponding phase
flip are taken from each echo pulse. The range and time for
pulse numberi are denoted byri andt(r)i , respectively. The
ranges are collected into a column vector

r = (r1, r2, . . . , rnr)
T , (15)

whereT indicates transpose. The four unknown parameters
in Eq. (12) make an unknown vector

x = (r0, v0, a0, ȧ)T . (16)

With this notation, the relation between the unknowns and
the measured ranges can, according to Eq. (12), written as

r = B(r) · x, (17)

where

B(r) =


1 t(r)1 t2

(r)1/2 t3
(r)1/6

1 t(r)2 t2
(r)2/2 t3

(r)2/6
...

...
...

...

1 t(r)nr t2
(r)nr/2 t3

(r)nr/6

 . (18)

The number of pulses used in velocity measurements is not
necessarily the same as that for range measurements and even
the times of range and velocity measurements from the same
pulse are not the same. Therefore the number of velocity
measurements is denoted bynv, and the velocities and the
times byvi andt(v)i , i = 1,2. . . ,nv. In analogy with Eq. (15),
the observed velocities are collected into a column vector

v = (v1,v2, . . . ,vnv)
T . (19)

The three unknown parameters in Eq. (13) are collected to a
column vector

x(v) = (v0, a0, ȧ)T , (20)

which contains the three last components of the unknown
vectorx. Then Eq. (13) gives

v = B(v) · x(v), (21)

where

B(v) =


1 t(v)1 t2

(v)1/2
1 t(v)2 t2

(v)2/2
...

...
...

1 t(v)nv t2
(v)nv/2

 . (22)

Equations (17) and (21) represent two linear inversion prob-
lems which could be solved separately. Actually, Eq. (21) is
the same problem which was presented in Paper I. Instead of
solving the two problems separately, a more compact way is
to combine them into a single one. This has benefits which
will be discussed later. The two vectorsr andv are combined
into a single measurement vector

m =

(
r

v

)
(23)

and the two matricesB(r) andB(v) into a single theory matrix

B =

(
B(r)

(0(v) B(v))

)
, (24)

where0(v) is anv × 1 zero matrix. Then the so-called direct
theory of the combined linear problems gets a simple form

m = B · x. (25)
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The standard deviations of the measurements are needed in
solving the linear inversion problem. The standard deviations
of ranges and velocities are collected, respectively, into col-
umn vectors

σ (r) = (σ(r)1, σ(r)2, . . . σ(r)nr)
T (26)

and

σ (v) = (σ(v)1, σ(v)2, . . . σ(v)nv)
T . (27)

Then the standard deviations ofm can be arranged into a
single vector

σ =

(
σ (r)

σ (v)

)
(28)

and the diagonal covariance matrix of the measurement vec-
tor is

6 = diag(σ · σ T ). (29)

The inversion problem in Eq. (25) can now be solved follow-
ing the procedure presented in Paper I. Hence the best value
of the unknown vector is

x̂ = (BT
· 6−1

· B)−1
· BT

· 6−1
· m (30)

and its error covariance matrix is

6x̂ = (BT
· 6−1

· B)−1. (31)

Since the vector̂x has 4 components,6x̂ is a 4× 4 matrix.
The best values of the unknown parametersr0, v0, a0 and
ȧ, i.e. r̂0, v̂0, â0 and ˆ̇a, are the components of̂x and their
variances are obtained from the diagonal components of6x̂ .

One can now calculate the time behaviour of range from
Eq. (17) and that of velocity from Eq. (21).

The standard deviation of range at each instant of time is
given by the square roots of the diagonal elements of the ma-
trix

6 r̂ = B(r) · 6x̂ · BT
(r). (32)

Correspondingly, the standard deviation of velocity at each
instant of time is obtained from the diagonal components of
the matrix

6v̂ = B(v) · 6x̂v · BT
(v), (33)

where6x̂v is the 3× 3 matrix in the bottom right corner of
6x̂ .

According to Eq. (21), the time variation of acceleration
can be written as

â = B(a) · x̂(a), (34)

wherex̂(a) = (â0, ˆ̇a)T andB(a) is a matrix similar to the first
two columns ofB(v). Then the standard deviation for each
time is obtained as a square root of the respective diagonal
element of the covariance matrix

6â = B(a) · 6x̂a · BT
(a), (35)

where6x̂a is a 2×2 matrix in the bottom right corner of6x̂ .
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Fig. 4. Ranges and their standard deviations from satellite pass 1.
Zero time time refers to the start time of the measurement for this
specific beam pass. Top panel: the red curve is the fitted range af-
ter subtracting a linear trendrL and the dots are ranges obtained
from individual pulses. Middle panel: standard deviations of ranges
from individual pulses. Bottom panel: standard deviations of fitted
ranges.

5 Inversion results

The method is demonstrated with data from the EIS-
CAT UHF radar, obtained from beam passes of EUMET-
SAT’s METOP-A satellite. The satellite is 3-axis sta-
bilised and, including its solar panel, it has a size of
17.6 m× 6.7 m× 5.4 m. The method described in Sect. 4 was
applied to the same 12 beam passes as those in Paper I. Fig-
ure 4 portrays ranges from satellite pass 1. The red curve in
the top panel indicates the ranges given by the inversion, after
subtracting a linear trendrL . The dots indicate ranges from
individual pulses, calculated as described in Sect. 3.

The middle panel in Fig. 4 shows the corresponding stan-
dard deviations from individual pulses. The smallest values
of these standard deviations are encountered close to the cen-
tre of the radar beam and their magnitude is of the order of
0.5 m. The plot also reveals a set of outliers making descend-
ing structures.

The standard deviations of the inversion results, calculated
according to Eq. (32), are plotted in the bottom panel in
Fig. 4. These standard deviations are of the order of 5 cm
and remain rather constant during the beam pass. The re-
sult shows that the inversion improves the standard deviation
roughly by an order of magnitude.
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Fig. 5.Velocities and their standard deviations from satellite pass 1.
Zero time refers to the start time of the measurement for this spe-
cific beam pass. Top panel: the red curve is the fitted velocity after
subtracting a linear trendvL and the dots are velocities obtained
from individual pulses. Middle panel: standard deviations of veloc-
ities from individual pulses. Bottom panel: standard deviations of
fitted velocities.

Figure 5 shows the corresponding results for velocity. The
dots in the top panel are the same as the dots in the top panel
in Fig. 4 of Paper I, but the red curve is obtained by fitting
the model simultaneously to both ranges and velocities. The
middle and bottom panels show the standard deviations of
measured and fitted velocities, respectively. Also in this case
the standard deviations are improved roughly by an order of
magnitude in fitting, leading to minimum values of a few mil-
limetres per second. Acceleration is not shown here, since its
behaviour is similar to that shown in Paper I.

The analysis made in Paper I revealed that the measured
velocities showed semiperiodic variations around the best-
fit curve during some beam passes. These variations were
clearly not of statistical origin. Therefore, even in this case
it is of interest to investigate how the measured values are
scattered around the fitted curves.

Figures 6 and 7 show deviations of individual range and
velocity measurements from the inversion results. Deviations
of ranges are portrayed in the top panels and the correspond-
ing deviations of velocities in the bottom panels. The red bars
are errors in terms of standard deviations.

Figure 6 contains results from beam pass 6. The range
observations in the top panel contain semiperiodic ascend-
ing structures with deviations of the order of a few metres.
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Fig. 6. Deviations of individual measured rangesrm (top) and ve-
locities vm (bottom) from the inversion resultsr andv. The stan-
dard deviations are indicated by red bars. The observations are from
beam pass 6.
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Fig. 7.Same as Fig. 6 for beam pass 1.

These deviations are too large in comparison with the stan-
dard deviations of the observation. The gaps in time come
from pulses which violate the amplitude criterion±0.7 ex-
plained in Sect. 3. Also in the bottom panel, the scatter of
individual velocity observations around the fitted value looks
too broad in comparison with the standard deviations. This
suggests that both range and velocity observations contain
errors which are not of statistical origin. The bottom panel
shows no variations similar to those in the top panel. Still,
the observed velocities may follow some semiperiodic vari-
ation which is partly invisible due to the scatter of the in-
dividual points. In some other beam passes clearer periodic
variations are seen, as shown in Paper I. Figure 7 contains
corresponding results from satellite pass 1. In this case no
clear periodicity is seen either in range or in velocity obser-
vations. Even here the scatter of individual points around the
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Fig. 8. Differences of ranges obtained by solving the complete in-
version problem and the inversion problem for mere range mea-
surements. The results for the two methods are denoted byr and
rr, respectively. The grey areas indicate the 3σ limits of rr. The top
panel is from beam pass 1 and the bottom panel from beam pass 6.

fitted curves seems too broad in comparison with their stan-
dard deviations.

There are two possible reasons for the observed broad dis-
tributions. One is that the true slopes at the phase shifts are
different from the applied model. Another point to consider
is the size of the satellite and its geometrical structure. The
signal model assumes a point target, whereas the satellite is
several metres in size and it carries different instruments and
a large solar panel. When the whole satellite is illuminated
by the incident wave, reflections from different parts of the
satellite are summed up in the received signal. Then the exact
meaning of the calculated range is not clear at all. In Paper I
it was assumed that the periodic velocity variations would be
due to the satellite rotation but, since the satellite is 3-axis
stabilised, this explanation does not seem to be valid. What-
ever the reasons are, the investigation of plots like those in
Figs. 6 and 7 shows that the true errors or range are not likely
to be higher than 1 m, which is clearly smaller than the satel-
lite size. Also, the errors of velocities must usually be smaller
than some centimetres per second.

Results from analyses made for all 12 beam passes are dis-
played in Table 1. The table contains ranges, velocities and
accelerations at a single instant of time for each beam pass,
together with their standard deviations. The reference times
are chosen at points where the standard deviation of range
is smallest. The standard deviations of velocity and acceler-
ation are typically of the order of a few mm s−1 and a few
mm s−2.
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Fig. 9. Comparison of velocities from beam pass 1, obtained by
three different inversions. Top panel: differences of velocities given
by the complete inversion problem and the inversion problem for
mere velocity measurements. The results for the two methods are
denoted byv and vv, respectively. Middle panel: the ratio of the
standard deviations ofvv and v, denoted byσvv and σv, respec-
tively. Bottom panel: differences of velocities given by the com-
plete inversion problem and the inversion problem for mere range
measurements. The latter results are denoted byvr. The grey areas
indicate the 3σ limits of vr.

6 Separate inversions

Equations (17) and (21) define two inversion problems which
can be solved separately. In the first one, the measurement
vector consists of ranges and in the second one the measure-
ments are velocities. The error covariance matrices of these
inversion results can be calculated in the same way as for
the complete inversion problem, i.e. in the way similar to
Eq. (31). The two sets of measurements in the separate in-
version problems are completely independent, since ranges
are determined from delay times and velocities from Doppler
shifts. When results from the two separate inversion prob-
lems are compared with those given by the joint inversion
problem, one can evaluate the benefit of the method applied
in this paper. In addition, both methods are able to give fit-
ted velocities and accelerations. Since they come from inde-
pendent measurements, the reliability of the method can be
checked by comparing the results.

Figure 8 shows the difference of rangerr given by the
range inversion problem in Eq. (17) and ranger given by
the complete inversion problem in Eq. (25). The top panel
comes from beam pass 1 and the bottom panel from beam
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Table 1.Results from 12 beam passes on 1 December 2010, after 16:00 UTC (Universal Time Coordinated). The numbers in the first column
refer to the beam passes in Table 1 of Paper I. The next three columns show the beam azimuths and elevations as well as the maximum SNR.
The following column gives the start times of the IPPs in minutes and seconds,1t gives the times of the results in the next columns (after the
start of the IPPs), and the last six columns contain the ranges, the line-of-sight velocities and the accelerations with their standard deviations.

No. az el SNR mm:ss 1t r σr v σv a σa
[◦] [◦] [s] [km] [mm] [m s−1] [mm s−1] [m s−2] [mm s−2]

1 77.90 23.34 905 20:07.0 6.5066567 1682.026872 52−4435.0593 3.1 17.9770 2.7
2 72.18 26.31 662 20:34.6 7.2662632 1564.066298 67−3863.0986 4.1 22.5049 4.3
3 65.31 29.20 33 21:04.4 4.4057653 1468.725878 484−3193.5365 23.7 27.2581 22.2
4 57.00 31.79 689 21:31.4 4.0858753 1393.804997 78−2401.9019 4.6 32.0409 6.8
5 47.66 33.78 217 21:58.4 4.0456398 1341.204460 157−1482.2168 8.2 35.9710 12.5
6 37.19 34.88 577 22:25.2 2.9653133 1315.273764 82−524.6610 5.1 38.3245 7.9
7 26.45 34.88 714 22:52.2 3.2853133 1315.272104 75 524.8633 4.4 38.1106 6.7
8 16.09 33.77 1511 23:18.9 3.3055848 1342.706574 47 1518.3179 3.1 35.7511 4.1
9 6.67 31.75 1062 23:45.3 4.0058845 1396.567347 53 2438.3166 3.5 31.8943 4.3

10 −1.47 29.15 1235 24:13.0 4.1259698 1476.087434 53 3255.2831 3.2 26.8743 3.7
11 −8.31 26.27 54 24:38.7 5.6262964 1573.977861 202 3920.0012 12.1 22.0638 8.6
12 −14.04 23.34 679 25:05.2 4.2465865 1678.975195 63 4422.7974 4.0 17.9785 4.1

pass 6. The difference is plotted by heavy lines and the grey
regions indicate statistical errors ofrr in terms of 3σ limits.
In the middle of the radar beam the agreement is quite good.
In the case of beam pass 1, for instance,rr − r = 0.2 m. At
the edges of the beam the difference may be of the order of a
few metres. It would be expected that the difference always
departs from zero by less than the given error limits. Indeed,
this mostly happens but not at all times. Figure 4 shows that
the standard deviations ofr from beam pass 1 are of the order
of 50 mm and nearly constant during the whole beam pass.
Close to the centre of the beam, the corresponding standard
deviations ofrr (not shown) are only about 26 % higher than
those ofr at the minimum of standard deviations, but at the
edges they are about 10-fold. Results for beam pass 6 are
quite similar. Hence including velocity measurements in the
inversion improves the accuracy of range only slightly close
to the centre of the beam, but the improvement during the
whole beam pass may be substantial.

Velocities obtained by different kind of inversions are
compared in Fig. 9. All these results are from beam pass 1.
The top panel shows the difference of velocities obtained
from velocity observations (vv) and those obtained by com-
bining both velocity and range observations (v). The differ-
ence is maximally of the order of a couple of millimetres per
second.

The ratio of the standard deviations given by the two meth-
ods is plotted in the middle panel in Fig. 9. The results shows
that including the range measurements in the inversion only
very slightly improves the accuracy. Thus the improvement
in velocity gained by the inversion problem in Eq. (25) in
comparison with that in Eq. (21) is nearly negligible.

The bottom panel in Fig. 9 shows the difference of velocity
vr obtained from range measurements andv, i.e. that given by
combining both velocity and range observations. The former

is obtained from Eq. (13) with the parameter values ofv0,
a0 and ȧ given by the inversion problem in Eq. (17). The
grey region indicates the statistical error ofvr in terms of 3σ
limits. It is found that the velocities given by the two methods
are well in agreement. Close to the beam centre the results
are nearly identical. For instance, at the time of minimum
standard deviation of range,vr − v = −9.3 mm s−1 and this
departs from zero by less than its 3σ limit. In most of the 12
beam passes this difference is smaller than 0.5 m s−1.

Figure 10 shows a similar comparison of acceleration
given by different inversions, also from beam pass 1. The
top panel gives the difference of accelerations from veloc-
ity measurements (av) and all measurements (a). The results
are nearly identical, the difference being always smaller than
1 mm s−2. The second panel indicates that the ratio of the
two standard deviations is almost precisely equal to unity, so
that same standard deviations are given by both methods. The
bottom panel demonstrates the accelerationar obtained by
range measurements and the grey region displays the 3σ lim-
its. At the edges of the beam, the difference may be of the or-
der of 2 m s−2 and, even at the time of minimum standard de-
viation of range,ar −a = 0.52 m s−2. At this instant of time,
the respective standard deviations areσar = 107 mm s−2 and
σa = 2.7 mm s−2. Considering thata ≈ 18 m s−2, the dis-
agreement betweena and ar is rather large in comparison
with the corresponding disagreements of range and velocity.

7 Summary and discussion

This paper, together with the earlier work by Nygrén et
al. (2012), presents a compound algorithm for determina-
tion of satellite velocity and range from radar pulses ob-
served during a beam pass of the satellite. The method first
calculates the Doppler shifts of individual echo pulses at
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Fig. 10. Comparison of accelerations from beam pass 1, obtained
by three different inversions. Top panel: differences of accelerations
given by the complete inversion problem and the inversion problem
for mere velocity measurements. The results for the two methods
are denoted bya andav, respectively. Middle panel: the ratio of
the standard deviations ofav anda, denoted byσav andσa, respec-
tively. Bottom panel: differences of velocities given by the com-
plete inversion problem and the inversion problem for mere range
measurements. The latter results are denoted byar. The grey areas
indicate the 3σ limits of ar.

accuracies beyond what can be obtained by Fourier trans-
form of any practical length. The beam-aligned velocities are
obtained from the Doppler shifts. This method is described
by Nygrén et al.(2012). Next, the time differences of corre-
sponding phase flips in the transmitted and received phase
coded pulses are determined. These time differences give
range values at times when the phase flips hit the target. The
method is based on the filtering effect on the pulse shape. The
receiver filter creates slopes at the phase flips and the ampli-
tudes of the samples at the slopes allow the determination of
the times of the phase flips at a high accuracy.

The ranges and velocities from a single beam pass of the
satellite are combined into a stochastic inversion problem.
Solving the problem gives a Taylor’s expansion of range as
a function of time up to the third time derivative. Thus the
result gives the time variation of range and velocity as well
as the linear time variation of the second time derivative of
range, together with their standard deviations.

The method is demonstrated using data from the EIS-
CAT UHF radar, obtained from beam passes of EUMET-
SAT’s METOP-A satellite. The smallest standard deviations
of range from the analysed 12 beam passes vary from 5 to

50 cm and those of velocity from 3 to 24 mm s−1. These are
the statistical error limits given by the applied model as-
suming a point target. The best results shown in this paper
compare well with those obtained by lasers, altimeters and
GPS receivers. For instance,Tapley et al.(1994), Nouël et
al. (1994) andVisser et al.(2009) report position errors of the
order of 5 cm or somewhat below.

The target satellite is 3-axis stabilised and, including its
solar panel, it has a size of 17.6 m× 6.7 m× 5.4 m. Thus the
standard deviation of range is much smaller than the satellite
size. Since the whole satellite is illuminated by the incident
wave, it is impossible to know what part of the satellite the
inversion result refers to. The analysis also shows that the ob-
served deviations of individual range observations from the
fitted range are often larger than what one would expect from
their standard deviations. As discussed in Sect. 5, this is pos-
sibly caused by the analysis method creating non-statistical
errors. The results indicate that the true error of the fitted re-
sults is not likely to be much higher than 1 m. This is still
smaller than the satellite size.

The determination of the true range is affected by a factor
which is not taken into account in this paper. The point of
transmission should be defined at an accuracy which com-
pares to the standard deviation of the calculated range. This
is a problem itself and it is not considered here.

Another fact to be taken into account is that the direction
of the satellite position cannot be determined precisely by
the monostatic radar experiment used in this paper. This is
because the results of the EISCAT UHF radar come from the
beam with a width of the order of 0.5◦. The variation of SNR
during the satellite pass gives some clue of a more precise
direction but, because the satellite hardly ever flies through
the centre of the beam, even this information cannot be very
precise. A tristatic radar would offer a possibility of more
accurate determination of satellite position. By directing all
three antennas to the satellite, one could find the ranges from
the three antennas, and then the position and velocity would
be unambiguously determined.

Since the radar pulse travels in the ionosphere, the radio
wave may be sightly affected by refraction and then the mea-
sured distance does not exactly correspond to a straight line
between the radar and the satellite. When extremely precise
measurements are made, the ionospheric effects are not nec-
essarily negligible (Hoque and Jakowski, 2011). These ef-
fects are largest at low elevations of the radar beam, but they
are not considered in the present work.

When considering the velocities, their true errors must also
be larger than those shown by the standard deviations. This is
seen by comparing the individual standard deviations and the
scatter of observations around the fitted velocities. Also, as
shown in the figures of the earlier paper (Nygrén et al., 2012),
the velocities sometimes show periodic variations around the
fitted values. Whatever the reason is, the true errors of veloc-
ity are usually not higher than a few centimetres per second.

www.ann-geophys.net/31/859/2013/ Ann. Geophys., 31, 859–870, 2013



870 J. Markkanen et al.: Satellite range and velocity

It is possible to divide the inversion problem into two sep-
arate parts, one of them using only range observations and
the other only velocity measurements. Comparison of results
from these inversion gives a view on the benefits gained by
the full inversion. The results show that the full inversion
problem only slightly improves the accuracy in the middle
of the radar beam, where smallest standard deviations are
obtained. However, a clear improvement is achieved at the
edges of the beam, and therefore the results given by the full
inversion problem are useful when applied in determining the
orbit parameters, for instance.

The separate inversion problems allow the determina-
tion of velocity separately from measured ranges and from
Doppler shifts, which are completely independent observa-
tions. The standard deviations given by the former method
are larger than those given by the latter one, but the agree-
ment between the two results is good. Closest to the centre of
the radar beam, the difference is typically some tens of cen-
timetres per second and rarely more than a few metres per
second. The difference usually lies within a 3σ limit of the
least accurate result. This agreement between the two results
greatly supports their reliability.

Ultimately, the accuracy of our method must be verified
against the operational orbit of the observed satellite. Before
this can be meaningfully done with the inherently very high
accuracy provided by the present method, the systematic off-
sets and distortions due to the receiver and the antenna need
to be carefully quantified. This will require further inspection
and measurements of the radar system itself.
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D.: Tristatic observations of meteors using the 930 MHz Euro-
pean Incoherent Scatter radar system, J. Geophys. Res., 107,
doi:10.1029/2001JA009205, 2002.
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