Articles | Volume 31, issue 10
https://doi.org/10.5194/angeo-31-1681-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-1681-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Enhanced EISCAT UHF backscatter during high-energy auroral electron precipitation
N. M. Schlatter
School of Electrical Engineering, Royal Institute of Technology, Teknikringen 31, 100 44 Stockholm, Sweden
N. Ivchenko
School of Electrical Engineering, Royal Institute of Technology, Teknikringen 31, 100 44 Stockholm, Sweden
T. Sergienko
Institute for Space Physics, Rymdcampus 1, 981 92 Kiruna, Sweden
B. Gustavsson
EISCAT scientific association, Rymdcampus 1, 981 92 Kiruna, Sweden. Now at: Department of Physics and Technology, University of Tromsø, 9037 Tromsø, Norway
B. U. E. Brändström
Institute for Space Physics, Rymdcampus 1, 981 92 Kiruna, Sweden
Related authors
Nickolay Ivchenko, Nicola M. Schlatter, Hanna Dahlgren, Yasunobu Ogawa, Yuka Sato, and Ingemar Häggström
Ann. Geophys., 35, 1143–1149, https://doi.org/10.5194/angeo-35-1143-2017, https://doi.org/10.5194/angeo-35-1143-2017, 2017
Short summary
Short summary
Photo-electrons and secondary electrons from particle precipitation enhance the incoherent scatter plasma line to levels sufficient for detection. A plasma line gives an accurate measure of the electron density and can be used to estimate electron temperature. The occurrence of plasma line enhancements in the EISCAT Svalbard Radar data was investigated. During summer daytime hours the plasma line is detectable in up to 90 % of the data. In winter time the occurrence is a few percent.
Hanna Dahlgren, Nicola M. Schlatter, Nickolay Ivchenko, Lorenz Roth, and Alexander Karlsson
Ann. Geophys., 35, 475–479, https://doi.org/10.5194/angeo-35-475-2017, https://doi.org/10.5194/angeo-35-475-2017, 2017
Short summary
Short summary
Anomalous strong echoes with three frequency peaks are occasionally seen with incoherent scatter radars in the ionosphere near 200 km altitude at high latitudes. We investigate how they relate to electron precipitation, by finding the resulting peak electron density and the height of the peak, respectively. We find that occurrence rate increases with density and decreases with height, indicating a correlation between the echoes and precipitating electrons with high energy and energy flux.
N. M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, and T. Grydeland
Ann. Geophys., 33, 837–844, https://doi.org/10.5194/angeo-33-837-2015, https://doi.org/10.5194/angeo-33-837-2015, 2015
Short summary
Short summary
The high-latitude ionosphere is a dynamic region where particle precipitation leads to various phenomena including wave instability and turbulence. Anomalous echoes related to aurora are observed in ground-based radar observations of the ionosphere. These echoes indicate enhanced ion acoustic fluctuations. In this article, we show that the origin of the echo is located in or close to the region of particle precipitation and that the echo region itself is limited to hundreds of meters.
Sota Nanjo, Masatoshi Yamauchi, Magnar Gullikstad Johnsen, Yoshihiro Yokoyama, Urban Brändström, Yasunobu Ogawa, Anna Naemi Willer, and Keisuke Hosokawa
EGUsphere, https://doi.org/10.5194/egusphere-2024-3277, https://doi.org/10.5194/egusphere-2024-3277, 2024
Short summary
Short summary
Our research explored the "shock aurora," caused by the impact of solar wind particles on Earth's magnetic field. On February 26, 2023, we observed this rare event on the nightside, where such observations are difficult. Ground-based cameras revealed new structural features, including undulating and jumping patterns. These results provide fresh insights into the complex interactions between the solar wind and Earth's magnetosphere, enhancing our understanding of space weather effects.
Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takehiko Aso, Björn Gustavsson, Urban Brändström, Tima Sergienko, Genta Ueno, and Satoko Saita
Ann. Geophys., 42, 179–190, https://doi.org/10.5194/angeo-42-179-2024, https://doi.org/10.5194/angeo-42-179-2024, 2024
Short summary
Short summary
We present via simulation how useful monochromatic images taken by a multi-point imager network are for auroral research in the EISCAT_3D project. We apply the generalized-aurora computed tomography (G-ACT) to modeled multiple auroral images and ionospheric electron density data. It is demonstrated that G-ACT provides better reconstruction results than the normal ACT and can interpolate ionospheric electron density at a much higher spatial resolution than observed by the EISCAT_3D radar.
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024, https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Short summary
A novel infrared imaging instrument (OH imager) was put into operation in November 2022 at the Swedish Institute of Space Physics in Kiruna (Sweden). The OH imager is dedicated to the study of nightglow emissions coming from the hydroxyl (OH) and molecular oxygen (O2) layers in the mesopause (80–100 km). Based on a brightness ratio of two OH emission lines, the neutral temperature is estimated at around 87 km. The average daily winter temperature for the period January–April 2023 is 203±10 K.
Thomas B. Leyser, Tima Sergienko, Urban Brändström, Björn Gustavsson, and Michael T. Rietveld
Ann. Geophys., 41, 589–600, https://doi.org/10.5194/angeo-41-589-2023, https://doi.org/10.5194/angeo-41-589-2023, 2023
Short summary
Short summary
Powerful radio waves transmitted into the ionosphere from the ground were used to study electron energization in the pumped ionospheric plasma turbulence, by detecting optical emissions from atomic oxygen. Our results obtained with the EISCAT (European Incoherent Scatter Scientific Association) facilities in northern Norway and optical detection with the ALIS (Auroral Large Imaging System) in northern Sweden suggest that long-wavelength upper hybrid waves are important in accelerating electrons.
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Daniel K. Whiter, Hanna Sundberg, Betty S. Lanchester, Joshua Dreyer, Noora Partamies, Nickolay Ivchenko, Marco Zaccaria Di Fraia, Rosie Oliver, Amanda Serpell-Stevens, Tiffany Shaw-Diaz, and Thomas Braunersreuther
Ann. Geophys., 39, 975–989, https://doi.org/10.5194/angeo-39-975-2021, https://doi.org/10.5194/angeo-39-975-2021, 2021
Short summary
Short summary
This paper presents an analysis of high-resolution optical and radar observations of a phenomenon called fragmented aurora-like emissions (FAEs) observed close to aurora in the high Arctic. The observations suggest that FAEs are not caused by high-energy electrons or protons entering the atmosphere along Earth's magnetic field and are, therefore, not aurora. The speeds of the FAEs and their internal dynamics were measured and used to evaluate theories for how the FAEs are produced.
Florine Enengl, Noora Partamies, Nickolay Ivchenko, and Lisa Baddeley
Ann. Geophys., 39, 795–809, https://doi.org/10.5194/angeo-39-795-2021, https://doi.org/10.5194/angeo-39-795-2021, 2021
Short summary
Short summary
Energetic particle precipitation has the potential to change the neutral atmospheric temperature at the bottom of the ionosphere. We have searched for events and investigated a possible correlation between lower-ionosphere electron density enhancements and simultaneous neutral temperature changes. Six of the 10 analysed events are associated with a temperature decrease of 10–20K. The events change the chemical composition in the mesosphere, and the temperatures are probed at lower altitudes.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Sam Tuttle, Betty Lanchester, Björn Gustavsson, Daniel Whiter, Nickolay Ivchenko, Robert Fear, and Mark Lester
Ann. Geophys., 38, 845–859, https://doi.org/10.5194/angeo-38-845-2020, https://doi.org/10.5194/angeo-38-845-2020, 2020
Short summary
Short summary
Electric fields in the atmosphere near dynamic aurora are important in the physics of the electric circuit within the Earth's magnetic field. Oxygen ions emit light as they move under the influence of these electric fields; the flow of this emission is used to find the electric field at high temporal resolution. The solution needs two other simultaneous measurements of auroral emissions to give key parameters such as the auroral energy. The electric fields increase with brightness of the aurora.
Gabriel Giono, Boris Strelnikov, Heiner Asmus, Tristan Staszak, Nickolay Ivchenko, and Franz-Josef Lübken
Atmos. Meas. Tech., 11, 5299–5314, https://doi.org/10.5194/amt-11-5299-2018, https://doi.org/10.5194/amt-11-5299-2018, 2018
Short summary
Short summary
Energetic photons, such as ultraviolet light, are able to eject electrons from a material surface, thus creating an electrical current, also called a photocurrent. A proper estimation of this photocurrent can be crucial for space- or rocket-borne particle detectors, as it can dominate over the currents that are of scientific interest (induced by charged particles, for example). This article outlines the design for photocurrent modelling and for experimental confirmation in a laboratory.
Nickolay Ivchenko, Nicola M. Schlatter, Hanna Dahlgren, Yasunobu Ogawa, Yuka Sato, and Ingemar Häggström
Ann. Geophys., 35, 1143–1149, https://doi.org/10.5194/angeo-35-1143-2017, https://doi.org/10.5194/angeo-35-1143-2017, 2017
Short summary
Short summary
Photo-electrons and secondary electrons from particle precipitation enhance the incoherent scatter plasma line to levels sufficient for detection. A plasma line gives an accurate measure of the electron density and can be used to estimate electron temperature. The occurrence of plasma line enhancements in the EISCAT Svalbard Radar data was investigated. During summer daytime hours the plasma line is detectable in up to 90 % of the data. In winter time the occurrence is a few percent.
Yunxia Yuan, Nickolay Ivchenko, Gunnar Tibert, Marin Stanev, Jonas Hedin, and Jörg Gumbel
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-91, https://doi.org/10.5194/amt-2017-91, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The paper presents a method to determine altitude profile of atmospheric density, temperature and wind by means of analysing the reconstructed trajectory of a rigid falling sphere released from a sounding rocket. The trajectory reconstruction is achieved by post-flight analysis of GPS raw data gathered in the sphere. A comparison of the results with independent measurements is presented, with good agreement of the falling sphere results with other sources in the stratosphere.
Hanna Dahlgren, Betty S. Lanchester, Nickolay Ivchenko, and Daniel K. Whiter
Ann. Geophys., 35, 493–503, https://doi.org/10.5194/angeo-35-493-2017, https://doi.org/10.5194/angeo-35-493-2017, 2017
Short summary
Short summary
Pulsating aurora are ubiquitous events that constitute a large amount of energy transfer to the ionosphere. Still there are unsolved issues regarding their formation. Using high-resolution optical and radar data, we find that it is the flux of high-energy electrons that get reduced during the OFF period of the pulsations. We also report on dips in brightness at the transition between ON and OFF, and asymmetric rise and fall times, which may have implications for understanding the pulsations.
Hanna Dahlgren, Nicola M. Schlatter, Nickolay Ivchenko, Lorenz Roth, and Alexander Karlsson
Ann. Geophys., 35, 475–479, https://doi.org/10.5194/angeo-35-475-2017, https://doi.org/10.5194/angeo-35-475-2017, 2017
Short summary
Short summary
Anomalous strong echoes with three frequency peaks are occasionally seen with incoherent scatter radars in the ionosphere near 200 km altitude at high latitudes. We investigate how they relate to electron precipitation, by finding the resulting peak electron density and the height of the peak, respectively. We find that occurrence rate increases with density and decreases with height, indicating a correlation between the echoes and precipitating electrons with high energy and energy flux.
N. M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, and T. Grydeland
Ann. Geophys., 33, 837–844, https://doi.org/10.5194/angeo-33-837-2015, https://doi.org/10.5194/angeo-33-837-2015, 2015
Short summary
Short summary
The high-latitude ionosphere is a dynamic region where particle precipitation leads to various phenomena including wave instability and turbulence. Anomalous echoes related to aurora are observed in ground-based radar observations of the ionosphere. These echoes indicate enhanced ion acoustic fluctuations. In this article, we show that the origin of the echo is located in or close to the region of particle precipitation and that the echo region itself is limited to hundreds of meters.
F. Sigernes, S. E. Holmen, D. Biles, H. Bjørklund, X. Chen, M. Dyrland, D. A. Lorentzen, L. Baddeley, T. Trondsen, U. Brändström, E. Trondsen, B. Lybekk, J. Moen, S. Chernouss, and C. S. Deehr
Geosci. Instrum. Method. Data Syst., 3, 241–245, https://doi.org/10.5194/gi-3-241-2014, https://doi.org/10.5194/gi-3-241-2014, 2014
Short summary
Short summary
A two-step procedure to calibrate the spectral sensitivity of auroral all-sky (fish-eye) cameras is outlined. First, center pixel response is obtained by the use of a Lambertian surface and a standard tungsten lamp. Second, all-sky flat-field correction is carried out with an integrating sphere.
K. Axelsson, T. Sergienko, H. Nilsson, U. Brändström, K. Asamura, and T. Sakanoi
Ann. Geophys., 32, 499–506, https://doi.org/10.5194/angeo-32-499-2014, https://doi.org/10.5194/angeo-32-499-2014, 2014
E. Belova, S. Kirkwood, and T. Sergienko
Ann. Geophys., 31, 1177–1190, https://doi.org/10.5194/angeo-31-1177-2013, https://doi.org/10.5194/angeo-31-1177-2013, 2013
N. M. Schlatter, N. Ivchenko, B. Gustavsson, T. Leyser, and M. Rietveld
Ann. Geophys., 31, 1103–1108, https://doi.org/10.5194/angeo-31-1103-2013, https://doi.org/10.5194/angeo-31-1103-2013, 2013
W. Reid, P. Achtert, N. Ivchenko, P. Magnusson, T. Kuremyr, V. Shepenkov, and G. Tibert
Atmos. Meas. Tech., 6, 777–785, https://doi.org/10.5194/amt-6-777-2013, https://doi.org/10.5194/amt-6-777-2013, 2013
D. K. Whiter, B. Gustavsson, N. Partamies, and L. Sangalli
Geosci. Instrum. Method. Data Syst., 2, 131–144, https://doi.org/10.5194/gi-2-131-2013, https://doi.org/10.5194/gi-2-131-2013, 2013
K. Axelsson, T. Sergienko, H. Nilsson, U. Brändström, Y. Ebihara, K. Asamura, and M. Hirahara
Ann. Geophys., 30, 1693–1701, https://doi.org/10.5194/angeo-30-1693-2012, https://doi.org/10.5194/angeo-30-1693-2012, 2012